首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heteroatomic cages (BN/2NN/2) with borons and nitrogens fully replacing alternant sets of carbons in cages are built graph-theoretically and investigated via the semiempirical MNDO Hamiltonian. The comparison with their parent carbon cages CN is made in terms both of electronic and of geometric changes. Infinite classes first of octahedral symmetry and second of hexagonal-bipyramidal symmetry fullerenoid cages are considered in detail. The difference in the electronegativities for boron and nitrogen implies the opening of HOMO-LUMO gaps for alternant BN clusters. In general, the borons prefer planar geometry (sp2 hybridization) while the nitrogens prefer pyramidalization (sp3 hybridization). © 1997 John Wiley & Sons, Inc.  相似文献   

2.
We have developed a rapid, sensitive, and automated analytical system to simultaneously determine the concentrations and stable isotopic compositions (δ15N, δ18O, and δ13C) of nanomolar quantities of nitrous oxide (N2O) and methane (CH4) in water, by combining continuous‐flow isotope‐ratio mass spectrometry and a helium‐sparging system to extract and purify the dissolved gases. Our system, which is composed of cold traps and a capillary gas chromatograph that use ultra‐pure helium as the carrier gas, achieves complete extraction of N2O and CH4 in a water sample and separation among N2O, CH4, and the other component gases. The flow path following exit from the gas chromatograph was periodically changed to pass the gases through the combustion furnace to convert CH4 and the other hydrocarbons into CO2, or to bypass the combustion furnace for the direct introduction of eluted N2O into the mass spectrometer, for determining the stable isotopic compositions through monitoring the ions of m/z 44, 45, and 46 of CO and N2O+. The analytical system can be operated automatically with sequential software programmed on a personal computer. Analytical precisions better than 0.2‰ and 0.3‰ and better than 1.4‰ and 2.6‰ were obtained for the δ15N and δ18O of N2O, respectively, when more than 6.7 nmol and 0.2 nmol of N2O, respectively, were injected. Simultaneously, analytical precisions better than 0.07‰ and 2.1‰ were obtained for the δ13C of CH4 when more than 5.5 nmol and 0.02 nmol of CH4, respectively, were injected. In this manner, we can simultaneously determine stable isotopic compositions of a 120 mL water sample with concentrations as low as 1.7 nmol/kg for N2O and 0.2 nmol/kg for CH4. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
The influence of protonation at N(1) on the conformational preferences of the N(6) substituent in the modified nucleic acid base N6-(N-glycylcarbonyl) adenine, gc6Ade, was investigated by the quantum chemical perturbative configuration interaction using localized orbitals (PCILO) method. The preferred orientation of the glycylcarbonyl substituent changes on the protonation of N(1). In the preferred conformation, the carbonyl oxygen O(10) is placed on the same side as N(1)H and provides stabilization through intramolecular hydrogen bonding of O(10) with HN(1). The amino acid component is so oriented that the carboxyl oxygen O(13b) is aligned closely with the N(6)H direction. Thus, the preferred molecular orientation is further stabilized by intramolecular hydrogen bonding involving HN(6) with O(13b). The alternative conformation has 0.5 kcal/mol higher energy than has the preferred conformation. The preferred conformation is about 1 kcal/mol more stable than is the conformation obtained by the flipping of torsion angle β alone, from the favored orientation for the unprotonated gc6Ade. © 1997 John Wiley & Sons, Inc. Int J Quant Chem 62: 551–556, 1997  相似文献   

4.
Analytical second derivatives of the energy are derived and efficiently implemented for semiempirical MNDO-type methods including AM1, PM3, and MNDO/d. A new algorithm for the simultaneous solution of several CPHF equations is proposed in which the amount of memory required is independent of the number of iterations. The analytical approach is faster than the numerical approach typically by a factor of 5 and exhibits a reliable convergence over a wide range of molecules. The asymptotic memory and secondary storage requirements of the reported procedure can be as low as O(N2) without significant degradation of the performance. © 1996 by John Wiley & Sons, Inc.  相似文献   

5.
Density functional theory (DFT) is employed to: 1) propose a viable catalytic cycle consistent with our experimental results for the mechanism of chemically driven (CeIV) O2 generation from water, mediated by nonheme iron complexes; and 2) to unravel the role of the ligand on the nonheme iron catalyst in the water oxidation reaction activity. To this end, the key features of the water oxidation catalytic cycle for the highly active complexes [Fe(OTf)2(Pytacn)] (Pytacn: 1‐(2′‐pyridylmethyl)‐4,7‐dimethyl‐1,4,7‐triazacyclononane; OTf: CF3SO3?) ( 1 ) and [Fe(OTf)2(mep)] (mep: N,N′‐bis(2‐pyridylmethyl)‐N,N′‐dimethyl ethane‐1,2‐diamine) ( 2 ) as well as for the catalytically inactive [Fe(OTf)2(tmc)] (tmc: N,N′,N′′,N′′′‐tetramethylcyclam) ( 3 ) and [Fe(NCCH3)(MePy2CH‐tacn)](OTf)2 (MePy2CH‐tacn: N‐(dipyridin‐2‐yl)methyl)‐N′,N′′‐dimethyl‐1,4,7‐triazacyclononane) ( 4 ) were analyzed. The DFT computed catalytic cycle establishes that the resting state under catalytic conditions is a [FeIV(O)(OH2)(LN4)]2+ species (in which LN4=Pytacn or mep) and the rate‐determining step is the O?O bond‐formation event. This is nicely supported by the remarkable agreement between the experimental (ΔG=17.6±1.6 kcal mol?1) and theoretical (ΔG=18.9 kcal mol?1) activation parameters obtained for complex 1 . The O?O bond formation is performed by an iron(V) intermediate [FeV(O)(OH)(LN4)]2+ containing a cis‐FeV(O)(OH) unit. Under catalytic conditions (CeIV, pH 0.8) the high oxidation state FeV is only thermodynamically accessible through a proton‐coupled electron‐transfer (PCET) process from the cis‐[FeIV(O)(OH2)(LN4)]2+ resting state. Formation of the [FeV(O)(LN4)]3+ species is thermodynamically inaccessible for complexes 3 and 4 . Our results also show that the cis‐labile coordinative sites in iron complexes have a beneficial key role in the O?O bond‐formation process. This is due to the cis‐OH ligand in the cis‐FeV(O)(OH) intermediate that can act as internal base, accepting a proton concomitant to the O?O bond‐formation reaction. Interplay between redox potentials to achieve the high oxidation state (FeV?O) and the activation energy barrier for the following O?O bond formation appears to be feasible through manipulation of the coordination environment of the iron site. This control may have a crucial role in the future development of water oxidation catalysts based on iron.  相似文献   

6.
The dynamics of the intramolecular electron transfer from Ru(II) to Ru(III) in binuclear mixedvalence complexes [(NH3)5Ru-L- Ru(NH3)5]5+ (L = N2,pyz, bipy, pym, bpa) is analyzed by the semiempirical CINDO +CI method. Translated fromZhumal Strukturnoi Khimii, Vol. 39, No. 4, pp. 579–590, July–August, 1998.  相似文献   

7.
Carboxymethyl cellulose (CMC)-rich cellulose sheets were prepared with a cationic retention aid, poly[N,N,N-trimethyl-N-(2-methacryloxyethyl)ammonium chloride] (PTMMAC), using a papermaking technique. When 5% PTMMAC and 5% CMC were added to cellulose slurries, approximately 94% of the polymers were retained in the sheets by formation of polyion complexes between the two polymers. When the PTMMAC/CMC/cellulose sheets were soaked in solutions consisting of ethanol, water and calcium chloride (EtOH/H2O/CaCl2) with a weight ratio of 75:24:1, almost all PTMMAC and CMC molecules remained in the sheets, forming the structures of PTMMAC-N+Cl and CMC-COOCa2+Cl without dissolution of these molecules in the soaking solution. Thus, PTMMAC, CMC and calcium contents in the sheets were able to be determined on the basis of these PTMMAC and CMC structures from analytical data such as nitrogen, calcium and chlorine contents. The trade-off properties between sufficient wet strength in use and water-disintegrability after use can be added to the PTMMAC/CMC/cellulose sheets by selecting weight ratios of the EtOH/H2O/CaCl2 solution used as the impregnation liquid.  相似文献   

8.
The isotopic composition of nitrous oxide (N2O) provides useful information for evaluating N2O sources and budgets. Due to the co-occurrence of multiple N2O transformation pathways, it is, however, challenging to use isotopic information to quantify the contribution of distinct processes across variable spatiotemporal scales. Here, we present an overview of recent progress in N2O isotopic studies and provide suggestions for future research, mainly focusing on: analytical techniques; production and consumption processes; and interpretation and modelling approaches. Comparing isotope-ratio mass spectrometry (IRMS) with laser absorption spectroscopy (LAS), we conclude that IRMS is a precise technique for laboratory analysis of N2O isotopes, while LAS is more suitable for in situ/inline studies and offers advantages for site-specific analyses. When reviewing the link between the N2O isotopic composition and underlying mechanisms/processes, we find that, at the molecular scale, the specific enzymes and mechanisms involved determine isotopic fractionation effects. In contrast, at plot-to-global scales, mixing of N2O derived from different processes and their isotopic variability must be considered. We also find that dual isotope plots are effective for semi-quantitative attribution of co-occurring N2O production and reduction processes. More recently, process-based N2O isotopic models have been developed for natural abundance and 15N-tracing studies, and have been shown to be effective, particularly for data with adequate temporal resolution. Despite the significant progress made over the last decade, there is still great need and potential for future work, including development of analytical techniques, reference materials and inter-laboratory comparisons, further exploration of N2O formation and destruction mechanisms, more observations across scales, and design and validation of interpretation and modelling approaches. Synthesizing all these efforts, we are confident that the N2O isotope community will continue to advance our understanding of N2O transformation processes in all spheres of the Earth, and in turn to gain improved constraints on regional and global budgets.  相似文献   

9.
The equilibrium geometry and UV-visible spectra of C70 were examined using semiempirical INDO /2 and INDO /CI methods. The results obtained are in good accord with experimental results. On the basis of correct electronic spectra, calculations of the nonlinear third-order optical susceptibility (γijkl) of C70 were performed using the INDO /SDCI method combined with a sum-over-states expression. The calculated value for <γ> (-2 ω, ω, ω, O) is 0.882 × 10?33 esu (ω = 1.91 μm), which is in good agreement with observation. © 1994 John Wiley & Sons, Inc.  相似文献   

10.
The 17O chemical shift data for a series of azine N-oxides, diazine N-oxides and di-N-oxides at natural abundance are reported. Isomeric methyl substituted quinoline N-oxides exhibited chemical shifts which are interpreted in terms of electronic and compressional effects. The 17O chemical shift for 8-methylquinoline N-oxide (370 ppm) is deshielded by 25 ppm more than predicted, based upon electronic considerations. The 17O chemical shift for the N-oxide of 8-hydroxyquinoline (289 ppm) is substantially shielded as a result of intramolecular hydrogen bonding. The relative 17O chemical shifts for diazine N-oxides of pyrazine, pyridazine and pyrimidine follow predictions based on back donation considerations. Because of solubility limitations, spectra of only two N,N′-dioxides were obtained. The chemical shift of benzopyrazine di N-oxide in acetonitrile was shielded by 18 ppm compared to that of its mono N-oxide.  相似文献   

11.
The Hartree-Fock (HF) electron density has an important property that it is identical to the unknown exact density to the first order in the perturbation theory. We generate the spherically averaged HF electron density ρ(r) by using the numerical HF method for the singly charged 53 cations from Li+ to Cs+ and 43 anions from H to I in their ground state. The resultant density is then accurately fitted into an analytical function F(r), which is expressed by a linear combination of basis functions r ni exp(−ζ i r). The present analytical approximation F(r) has the following properties: (1) F(r) is nonnegative, (2) F(r) is normalized, (3) F(r) reproduces the HF moments <r k > (k=−2 to +6), (4) F(0) is equal to ρ(0), (5) F (0) satisfies the cusp condition and (6) F(r) has the correct exponential decay in the long-range asymptotic region. The present results together with our previous ones for neutral atoms provide a compilation of accurate analytical approximations of the HF electron densities for all the neutral and singly charged atoms with the number of electrons N≤54. Received: 11 July 1997 / Accepted: 27 August 1997  相似文献   

12.
N-cyanomethyl-N-ethyl aniline (CEAN) and N-cyanomethyl-N-ethyl-p-anisidine (CEPA) have been thermolyzed in a stirred-flow reactor, in the range of 510–560 °C, pressures of 7–11 torr and residence times of 0.5–0.9 s, using toluene as carrier gas. N-cyanomethyl-N-ethyl-p-nitroaniline (ECNA) was thermolyzed at 640°C and 13% conversion. Ethylene and HCN formed in 43% yield each as products from all three starting materials. Phenyl methanaldimine and p-anisidyl methanaldimine were also products of CEAN and CEPA, respectively. The consumption of CEAN and CEPA showed first-order kinetics for a three-fold increase of reactant inflow and initial conversions of up to 40 percent. The following Arrhenius equations were obtained from the rate coefficients for the production of ethylene: CEAN: k=1015.10±0.74 exp(−238±11 kJ/mol·RT); CEPA: k=1015.61±0.29 exp(−246±4 kJ/mol·RT). The results are explained by means of radical, nonchain thermolysis mechanisms. The thermochemistry of relevant reaction steps has been estimated from thermochemical parameters calculated by using the semiempirical AM1 method. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet: 30: 451–456, 1998  相似文献   

13.
Two new NiII complexes involving the ancillary ligand bis[(pyridin‐2‐yl)methyl]amine (bpma) and two different carboxylate ligands, i.e. homophthalate [hph; systematic name: 2‐(2‐carboxylatophenyl)acetate] and benzene‐1,2,4,5‐tetracarboxylate (btc), namely catena‐poly[[aqua{bis[(pyridin‐2‐yl)methyl]amine‐κ3N,N′,N′′}nickel(II)]‐μ‐2‐(2‐carboxylatophenyl)aceteto‐κ2O:O′], [Ni(C9H6O4)(C12H13N3)(H2O)]n, and (μ‐benzene‐1,2,4,5‐tetracarboxylato‐κ4O1,O2:O4,O5)bis(aqua{bis[(pyridin‐2‐yl)methyl]amine‐κ3N,N′,N′′}nickel(II)) bis(triaqua{bis[(pyridin‐2‐yl)methyl]amine‐κ3N,N′,N′′}nickel(II)) benzene‐1,2,4,5‐tetracarboxylate hexahydrate, [Ni2(C10H2O8)(C12H13N3)2(H2O)2]·[Ni(C12H13N3)(H2O)3]2(C10H2O8)·6H2O, (II), are presented. Compound (I) is a one‐dimensional polymer with hph acting as a bridging ligand and with the chains linked by weak C—H...O interactions. The structure of compound (II) is much more complex, with two independent NiII centres having different environments, one of them as part of centrosymmetric [Ni(bpma)(H2O)]2(btc) dinuclear complexes and the other in mononuclear [Ni(bpma)(H2O)3]2+ cations which (in a 2:1 ratio) provide charge balance for btc4− anions. A profuse hydrogen‐bonding scheme, where both coordinated and crystal water molecules play a crucial role, provides the supramolecular linkage of the different groups.  相似文献   

14.
The structures of three copper‐containing complexes, namely (benzoato‐κ2O,O′)[(E)‐2‐({[2‐(diethylamino)ethyl]imino}methyl)phenolato‐κ3N,N′,O]copper(II) dihydrate, [Cu(C7H5O2)(C13H19N2O)]·2H2O, 1 , [(E)‐2‐({[2‐(diethylamino)ethyl]imino}methyl)phenolato‐κ3N,N′,O](2‐phenylacetato‐κ2O,O′)copper(II), [Cu(C8H7O2)(C13H19N2O)], 2 , and bis[μ‐(E)‐2‐({[3‐(diethylamino)propyl]imino}methyl)phenolato]‐κ4N,N′,O:O4O:N,N′,O‐(μ‐2‐methylbenzoato‐κ2O:O′)copper(II) perchlorate, [Cu2(C8H7O2)(C12H17N2O)2]ClO4, 3 , have been reported and all have been tested for their activity in the oxidation of d ‐galactose. The results suggest that, unlike the enzyme galactose oxidase, due to the precipitation of Cu2O, this reaction is not catalytic as would have been expected. The structures of 1 and 2 are monomeric, while 3 consists of a dimeric cation and a perchlorate anion [which is disordered over two orientations, with occupancies of 0.64 (4) and 0.36 (4)]. In all three structures, the central Cu atom is five‐coordinated in a distorted square‐pyramidal arrangment (τ parameter of 0.0932 for 1 , 0.0888 for 2 , and 0.142 and 0.248 for the two Cu centers in 3 ). In each species, the environment about the Cu atom is such that the vacant sixth position is open, with very little steric crowding.  相似文献   

15.
The title complexes, catena‐poly[[aqua(1,10‐phenanthroline‐κ2N,N′)­cobalt(II)]‐μ‐benzene‐1,4‐di­carboxyl­ato‐κ2O1:O4], [Co(C8H4O4)(C12H8N2)(H2O)], (I), and catena‐poly[[[(di‐2‐pyridyl‐κN‐amine)copper(II)]‐μ‐benzene‐1,4‐di­carboxyl­ato‐κ4O1,O1′:O4,O4′] hydrate], [Cu(C8H4O4)(C10H9N3)]·H2O, (II), take the form of zigzag chains, with the 1,4‐benzene­di­carboxyl­ate ion acting as an amphimonodentate ligand in (I) and a bis‐bidentate ligand in (II). The CoII ion in (I) is five‐coordinate and has a distorted trigonal–bipyramidal geometry. The CuII ion in (II) is in a very distorted octahedral 4+2 environment, with the octahedron elongated along the trans O—Cu—O bonds and with a trans O—Cu—O angle of only 137.22 (8)°.  相似文献   

16.
The electronic structure of the ground and excited states of the binuclear mixed-valence complex [Ru(NH3)5]2(4,4’-bipy)5+ is calculated by the semiempirical INDO + CI method, and an electronic spectrum assignment is given. A theoretical model of electron transfer between the Ru(II) and Ru(III) metal centers is constructed on the basis of many-electron wave functions. The dependence of the electron transfer characteristics on the angles between the planes of the pyridine rings and also between the pyridine rings and the planes of cis(NH3)-Ru-cis(NH3) is analyzed. Translated fromZhumal Struktumoi Khimii, Vol. 38, No. 3, pp. 447–456, May–June, 1997.  相似文献   

17.
In the crystal networks of N,N′‐bis(2‐chlorobenzyl)‐N′′‐(2,6‐difluorobenzoyl)phosphoric triamide, C21H18Cl2F2N3O2P, (I), N‐(2,6‐difluorobenzoyl)‐N′,N′′‐bis(4‐methoxybenzyl)phosphoric triamide, C23H24F2N3O4P, (II), and N‐(2‐chloro‐2,2‐difluoroacetyl)‐N′,N′′‐bis(4‐methylphenyl)phosphoric triamide, C16H17ClF2N3O2P, (III), C=O...H—NC(O)NHP(O) and P=O...H—Namide hydrogen bonds are responsible for the aggregation of the molecules. This is the opposite result from that commonly observed for carbacylamidophosphates, which show a tendency for the phosphoryl group, rather than the carbonyl counterpart, to form hydrogen bonds with the NH group of the C(O)NHP(O) skeleton. This hydrogen‐bond pattern leads to cyclic R22(10) motifs in (I)–(III), different from those found for all previously reported compounds of the general formula RC(O)NHP(O)[NR1R2]2 with the syn orientation of P=O versus NH [R22(8)], and also from those commonly observed for RC(O)NHP(O)[NHR1]2 [a sequence of alternate R22(8) and R22(12) motifs]. In these cases, the R22(8) and R22(12) graph sets are formed through similar kinds of hydrogen bond, i.e. a pair of P=O...H—NC(O)NHP(O) hydrogen bonds for the former and two C=O...H—Namide hydrogen bonds for the latter. This article also reviews 102 similar structures deposited in the Cambridge Structural Database and with the International Union of Crystallography, with the aim of comparing hydrogen‐bond strengths in the above‐mentioned cyclic motifs. This analysis shows that the strongest N—H...O hydrogen bonds exist in the R22(8) rings of some molecules. The phosphoryl and carbonyl groups in each of compounds (I)–(III) are anti with respect to each other and the P atoms are in a tetrahedral coordination environment. In the crystal structures, adjacent molecules are linked via the above‐mentioned hydrogen bonds in a linear arrangement, parallel to [010] for (I) and (III) and parallel to [100] for (II). Formation of the NC(O)NHP(O)—H...O=C instead of the NC(O)NHP(O)—H...O=P hydrogen bond is reflected in the higher NC(O)NHP(O)—H vibrational frequencies for these molecules compared with previously reported analogous compounds.  相似文献   

18.
A homochiral helical three‐dimensional coordination polymer, poly[[(μ2‐acetato‐κ3O,O′:O)(hydroxido‐κO)(μ4‐5‐nicotinamido‐1H‐1,2,3,4‐tetrazol‐1‐ido‐κ5N1,O:N2:N4:N5)(μ3‐5‐nicotinamido‐1H‐1,2,3,4‐tetrazol‐1‐ido‐κ4N1,O:N2:N4:N5)dicadmium(II)] 0.75‐hydrate], {[Cd2(C7H5N6O)2(CH3COO)(OH)]·0.75H2O}n, was synthesized by the reaction of cadmium acetate, N‐(1H‐tetrazol‐5‐yl)isonicotinamide (H‐NTIA), ethanol and H2O under hydrothermal conditions. The asymmetric unit contains two crystallographically independent CdII cations, two deprotonated 5‐nicotinamido‐1H‐1,2,3,4‐tetrazol‐1‐ide (NTIA) ligands, one acetate anion, one hydroxide anion and three independent partially occupied water sites. The two CdII cations, with six‐coordinated octahedral and seven‐coordinated pentagonal bipyramidal geometries are located on general sites. The tetrazole group of one symmetry‐independent NTIA ligand links one of the independent CdII cations into 61 helical chains, while the other NTIA ligand links the other independent CdII cations into similar but unequal 61 helical chains. These chains, with a pitch of 24.937 (5) Å, intertwine into a double‐stranded helix. Each of the double‐stranded 61 helices is further connected to six adjacent helical chains through an acetate μ2‐O atom and the tetrazole group of the NTIA ligand into a three‐dimensional framework. The helical channel is occupied by the isonicotinamide groups of NTIA ligands and two helices are connected to each other through the pyridine N and carbonyl O atoms of isonicotinamide groups. In addition, N—H...O and O—H...N hydrogen bonds exist in the complex.  相似文献   

19.
Nitrous oxide (N2O) is an intermediate compound formed during catalysis occurring in automobile exhaust pipes. In this work, the N2O capture and activation by Pt and Pd atoms in the ground and excited states of many multiplicities are studied. Pt and Pd + N2O reactions are studied at multireference second‐order perturbation level of theory using Cs symmetry. The PtN2O (1A′, 5A′, and 5A″) species are spontaneously created from excited states. Only the 5A′ and 5A″ states exhibit N2O activation reaction paths when N2O approaches Pt end‐on by the N or O atoms side or side‐on yielding NO or N2 as products, respectively. Pt+ cations ground and excited states, capture N2O, although only Pt+ (6A′ and 6A″) states show N2O activation yielding O and N2 as products. In the Pd atom case, PdN2O (1A′ and 5A″) species are also spontaneously created from excited states. The 5A″ state exhibits N2O activation yielding N2 + O as products. Pd+ cations in both ground and excited states capture N2O; however, only the [PdN2O]+ (4A′, 4A″, 6A′, and 6A″) states in side‐on approaches and (6A′) in end‐on approach activate the N2O and yield the N2 bounded to the metal and O as product. The results obtained in this work are discussed and compared with previous calculations of Rh and Au atoms. The reaction paths show a metal–gas dative covalent bonding character. Löwdin charge population analyses for Pt and Pd active states show a binding done through charge donation and retrodonation between the metals and N2O. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
Analysis of extended X-ray absorption fine structure (EXAFS) data for the MnIV-oxo complexes [MnIV(O)(DMMN4py)]2+, [MnIV(O)(2pyN2B)]2+, and [MnIV(O)(2pyN2Q)]2+ (DMMN4py=N,N-bis(4-methoxy-3,5-dimethyl-2-pyridylmethyl)-N-bis(2-pyridyl)methylamine; 2pyN2B=(N-bis(1-methyl-2-benzimidazolyl)methyl-N-(bis-2-pyridylmethyl)amine, and 2pyN2Q=N,N-bis(2-pyridyl)-N,N-bis(2-quinolylmethyl)methanamine) afforded Mn=O and Mn−N bond lengths. The Mn=O distances for [MnIV(O)(DMMN4py)]2+ and [MnIV(O)(2pyN2B)]2+ are 1.72 and 1.70 Å, respectively. In contrast, the Mn=O distance for [MnIV(O)(2pyN2Q)]2+ was significantly longer (1.76 Å). We attribute this long distance to sample heterogeneity, which is reasonable given the reduced stability of [MnIV(O)(2pyN2Q)]2+. The Mn=O distances for [MnIV(O)(DMMN4py)]2+ and [MnIV(O)(2pyN2B)]2+ could only be well-reproduced using DFT-derived models that included strong hydrogen-bonds between second-sphere solvent 2,2,2-trifluoroethanol molecules and the oxo ligand. These results suggest an important role for the 2,2,2-trifluoroethanol solvent in stabilizing MnIV-oxo adducts. The DFT methods were extended to investigate the structure of the putative [MnIV(O)(N4py)]2+⋅(HOTf)2 adduct. These computations suggest that a MnIV-hydroxo species is most consistent with the available experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号