首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
在298.15 K下利用等温环境溶解反应热量计测定了离子液体C3MIBF4(四氟硼酸1-甲基-3-丙基咪唑)和C5MIBF4(四氟硼酸1-甲基-3-戊基咪唑)不同浓度水溶液的摩尔溶解焓(ΔsHm). 借助Pitzer电解质溶液理论, 得到了它们的标准摩尔溶解焓 和Pitzer焓参数: 和 , 并计算了表观相对摩尔焓. 根据Glasser理论计算了离子液体晶格能, 进而估算了离子液体C5MIBF4和C3MIBF4中正离子的水化焓分别为-171 kJ•mol-1 (C5MI)和-207 kJ•mol-1 (C3MI).  相似文献   

2.
杨家振  关伟  王恒  李垒  张庆国 《化学学报》2006,64(13):1385-1388
在充满干燥氩气的手套箱中用直接混合等物质的量的EMIC(氯化1-甲基-3-乙基咪唑)和高纯无水InCl3的方法, 制备了含稀散金属铟的离子液体EMIInCl4. 在298.15 K下, 利用自行组装的具有恒温环境的溶解反应热量计, 测定了离子液体EMIInCl4和EMIC在水中的反应溶解热, 并将这些实验数据按Pitzer方程作拟合, 分别得到了EMIInCl4和EMIC的无限稀释摩尔溶解热ΔsHm0和Pitzer溶解焓参数. 根据溶解热和水化热数据, 估算了InCl4(g)解离成In3+(g)和4Cl(g)的解离热, 还估算了反应: EMIC+InCl3→EMIInCl4的摩尔反应热ΔrHm=(-60.37±1.8) kJ•mol-1. 在合成离子液体EMIInCl 4中也观察到了放热现象, 这表明在合成过程中生成了InCl4.  相似文献   

3.
合成了高氯酸镨和咪唑(C3H4N2), DL-α-丙氨酸(C3H7NO2)混配配合物晶体. 经傅立叶变换红外光谱、化学分析和元素分析确定其组成为[Pr(C3H7NO2)2(C3H4N2)(H2O)](ClO4)3. 使用具有恒温环境的溶解-反应量热计, 以2.0 mol•L-1 HCl为量热溶剂, 在T=(298.150±0.001) K时测定出化学反应PrCl3•6H2O(s)+2C3H7NO2(s)+C3H4N2(s)+3NaClO4(s)=[Pr(C3H7NO2)2(C3H4N2)(H2O)](ClO4)3(s)+3NaCl(s)+5H2O(1)的标准摩尔反应焓为ΔrHmө=(39.26±0.11) kJ•mol-1. 根据盖斯定律, 计算出配合物的标准摩尔生成焓为ΔfHmө{[Pr(C3H7NO2)2(C3H4N2)(H2O)](ClO4)3(s), 298.150 K}=(-2424.2±3.3) kJ•mol-1. 采用TG-DTG技术研究了配合物在流动高纯氮气(99.99%)气氛中的非等温热分解动力学, 运用微分法(Achar-Brindley-sharp和Kissinger法)和积分法(Satava-Sestak和Coats-Redfern法)对非等温动力学数据进行分析, 求得分解反应的表观活化能E=108.9 kJ•mol-1, 动力学方程式为dα/dt=2(5.90×108/3)(1-α)[-ln(1-α)]-1exp(-108.9×103/RT).  相似文献   

4.
合成了无水乳酸配合物(NH4)2[Sr(C3H5O3)4]。用X射线单晶衍射仪对该配合物的晶体结构进行了表征,确定了其组成、空间结构和配位方式。绘制了配合物的Hirshfeld表面和2D指纹图,揭示了分子间的相互作用以及该配合物具有多个配位位点和较强的配位活性。根据相关的晶体数据计算出了该配合物的晶格能及其对应阴离子的摩尔体积,计算得到该配合物的晶格能为2742.9 kJ·mol-1。用等温环境反应-溶解量热计测量了该配合物在298 K超纯水溶剂中的溶解焓。根据Pitzer电解质溶液理论,在298 K下获得了该配合物的无限稀释摩尔溶解焓△sHm和Pitzer参数,确定该配合物的△sHm为(114.01±0.04) kJ·mol-1。计算了该配合物的表观相对摩尔焓(ΦL)以及不同浓度下溶质和溶剂的相对偏摩尔焓(L1L2)。最后,根据晶格能和△sHm设计了热化学循环,并计算出了阴离子的水合焓值。热重和微商热重曲线进一步揭示了该配合物的结构。  相似文献   

5.
合成了高氯酸镨和咪唑(C3H4N2), DL-α-丙氨酸(C3H7NO2)混配配合物晶体. 经傅立叶变换红外光谱、化学分析和元素分析确定其组成为[Pr(C3H7NO2)2(C3H4N2)(H2O)](ClO4)3. 使用具有恒温环境的溶解-反应量热计, 以2.0 mol•L-1 HCl为量热溶剂, 在T=(298.150±0.001) K时测定出化学反应PrCl3•6H2O(s)+2C3H7NO2(s)+C3H4N2(s)+3NaClO4(s)=[Pr(C3H7NO2)2(C3H4N2)(H2O)](ClO4)3(s)+3NaCl(s)+5H2O(1)的标准摩尔反应焓为ΔrHmө=(39.26±0.11) kJ•mol-1. 根据盖斯定律, 计算出配合物的标准摩尔生成焓为ΔfHmө{[Pr(C3H7NO2)2(C3H4N2)(H2O)](ClO4)3(s), 298.150 K}=(-2424.2±3.3) kJ•mol-1. 采用TG-DTG技术研究了配合物在流动高纯氮气(99.99%)气氛中的非等温热分解动力学, 运用微分法(Achar-Brindley-sharp和Kissinger法)和积分法(Satava-Sestak和Coats-Redfern法)对非等温动力学数据进行分析, 求得分解反应的表观活化能E=108.9 kJ•mol-1, 动力学方程式为dα/dt=2(5.90×108/3)(1-α)[-ln(1-α)]-1exp(-108.9×103/RT).  相似文献   

6.
合成了一种稀土高氯酸盐-谷氨酸配合物. 经TG/DTG、化学和元素分析、FTIR及与相关文献对比, 确定其组成为[Pr2(L-α-Glu)2(ClO4)(H2O)7](ClO4)3•4H2O, 纯度为99.0%以上. 利用显微熔点仪分析发现其没有熔点. 在78~370 K温区, 用精密绝热量热仪测量其低温热容, 在285~306 K温区发现一明显吸热峰, 归结为固-固相变过程. 通过相变温区三次重复热容测量, 得到相变温度Ttr、相变焓ΔtrHm和相变熵ΔtrSm分别为(297.158±0.280) K, (12.338±0.016) kJ•mol-1和(41.520±0.156) J•K-1•mol-1. 用最小二乘法将非相变温区的热容对温度进行拟合, 得到了热容随温度变化的两个多项式方程. 用此方程进行数值积分, 得到每隔5 K的舒平热容值和相对于273.15 K的热力学函数值. 根据TG/DTG结果, 推测了该配合物的热分解机理. 依据Hess定律, 选择1 mol•dm-3盐酸为量热溶剂, 利用等温环境溶解-反应量热计, 测定了该配合物的标准摩尔生成焓为: ΔfHm0=-(7223.1±2.4) kJ•mol-1.  相似文献   

7.
合成了无水乳酸配合物(NH4)2[Sr(C3H5O3)4]。用X射线单晶衍射仪对该配合物的晶体结构进行了表征,确定了其组成、空间结构和配位方式。绘制了配合物的Hirshfeld表面和2D指纹图,揭示了分子间的相互作用以及该配合物具有多个配位位点和较强的配位活性。根据相关的晶体数据计算出了该配合物的晶格能及其对应阴离子的摩尔体积,计算得到该配合物的晶格能为2 742.9 kJ·mol-1。用等温环境反应-溶解量热计测量了该配合物在298 K超纯水溶剂中的溶解焓。根据Pitzer电解质溶液理论,在298 K下获得了该配合物的无限稀释摩尔溶解焓ΔsHm和Pitzer参数,确定该配合物的ΔsHm为(114.01±0.04) kJ·mol-1。计算了该配合物的表观相对摩尔焓(ΦL)以及不同浓度下溶质和溶剂的相对偏摩尔焓(L1L2)。最后,根据晶格能和ΔsHm设计了热化学循环,并计算出了阴离子的水合焓值。热重和微商热重曲线进一步揭示了该配合物的结构。  相似文献   

8.
在干燥氩气氛下, 用等摩尔的高纯无水GaCl3和[C2mim][Cl](氯化1-甲基-3-乙基咪唑)直接搅拌混合, 制备了淡黄色透明的的离子液体[C2mim][GaCl4] (1-ethyl-3-methylimidazolium chlorogallate) . 在298.15 K下, 利用具有恒温环境的溶解反应热量计, 测定了这种离子液体的不同浓度摩尔溶解焓 . 针对[C2mim][GaCl4]溶解于水后即分解的特点, 在Pitzer电解质溶液理论基础上, 提出了确定这种离子液体标准摩尔溶解焓的新方法, 得到了[C2mim][GaCl4]在水中的标准摩尔溶解焓, =-132 kJ•mol-1, 以及Pitzer焓参数组合: =-0.1373076和 =0.3484209. 借助热力学循环和Glasser离子液体晶格能理论, 用Ga3+, Cl-和[C2mim]—的离子水化焓数据以及本文得到的[C2mim][GaCl4]标准摩尔溶解焓, 估算了配离子4Cl-(g)解离成Ga3+(g)和4Cl-(g)的解离焓ΔHdis([GaCl4]-)≈5855 kJ•mol-1. 这个结果揭示了离子液体[C2mim][GaCl4]的标准摩尔溶解焓绝对值并不很大的原因, 即是很大的离子水化焓被很大的[GaCl4]-(g)的解离焓相互抵消了.  相似文献   

9.
在无水乙醇中, 使低水合氯化稀土 (RE = Ho, Er, Tm, Yb, Lu) 与吡咯烷二硫代氨基甲酸铵 (APDC)和1,10-菲咯啉 (o–phen•H2O) 反应, 制得其三元固态配合物. 用化学分析和元素分析确定它的组成为RE(C5H8NS2)3(C12H8N2) (RE = Ho, Er, Tm, Yb, Lu). IR光谱说明RE3+ 分别与3个PDC的6个硫原子双齿配位, 同时与o–phen的2个氮原子双齿配位, 配位数为8. 用精密转动弹热量计测定了它们的恒容燃烧热△cU分别为(-16788.46 ± 7.74), (-15434.53 ± 8.28), (-15287.80 ± 7.31), (-15200.50 ± 7.22)和(-15254.34 ± 6.61) kJ•mol-1; 并计算了它们的标准摩尔燃烧焓△cHmθ和标准摩尔生成焓△fHmθ分别为( -16803.95 ± 7.74), (-15450.02 ± 8.28), (-15303.29 ± 9.28), (-15215.99 ± 7.22), (-15269.83 ± 6.61) kJ • mol-1和 (-1115.42 ± 8.94), (-2477.80 ± 9.15), (-2619.95 ± 10.44), (-2670.17 ± 8.22), (-2650.06 ± 8.49) kJ•mol-1.  相似文献   

10.
邸友莹  谭志诚  李彦生 《化学学报》2006,64(13):1393-1401
合成了一种稀土高氯酸盐-谷氨酸配合物. 经TG/DTG、化学和元素分析、FTIR及与相关文献对比, 确定其组成为[Pr2(L-α-Glu)2(ClO4)(H2O)7](ClO4)3•4H2O, 纯度为99.0%以上. 利用显微熔点仪分析发现其没有熔点. 在78~370 K温区, 用精密绝热量热仪测量其低温热容, 在285~306 K温区发现一明显吸热峰, 归结为固-固相变过程. 通过相变温区三次重复热容测量, 得到相变温度Ttr、相变焓ΔtrHm和相变熵ΔtrSm分别为(297.158±0.280) K, (12.338±0.016) kJ•mol-1和(41.520±0.156) J•K-1•mol-1. 用最小二乘法将非相变温区的热容对温度进行拟合, 得到了热容随温度变化的两个多项式方程. 用此方程进行数值积分, 得到每隔5 K的舒平热容值和相对于273.15 K的热力学函数值. 根据TG/DTG结果, 推测了该配合物的热分解机理. 依据Hess定律, 选择1 mol•dm-3盐酸为量热溶剂, 利用等温环境溶解-反应量热计, 测定了该配合物的标准摩尔生成焓为: ΔfHm0=-(7223.1±2.4) kJ•mol-1.  相似文献   

11.
利用时间分辨激光光解技术研究了季铵盐型离子液体[Me3NC2H4OH]Zn2Cl5(简写R-Zn2Cl5)的光解行为, 研究发现离子液体能被266 nm激光单光子电离, 生成阳离子自由基、[Zn2Cl5]中性自由基和水合电子, 观察到胆碱激发三线态的存在, 并测定了离子液体光电离的量子产额为0.04. 利用266 nm激光对离子液体、胆碱、氯化锌、氯化钠的光解行为比较, 发现胆碱阳离子的贡献很小, [Zn2Cl5]阴离子起主要作用. 采用氧化性自由基SO4•-引发离子自由基, 揭示其光电离机理, 测定离子液体的动力学反应速率常数, SO4•- 460 nm的衰减速率常数为1.3×109 L•mol-1•s-1, 320 nm离子自由基瞬态产物的生成速率常数为1.5×109 L•mol-1•s-1, 两者很接近, 说明SO4•-自由基的衰减与瞬态自由基的生成是同步的.  相似文献   

12.
利用时间分辨激光光解技术研究了季铵盐型离子液体[Me3NC2H4OH]Zn2Cl5(简写R-Zn2Cl5)的光解行为, 研究发现离子液体能被266 nm激光单光子电离, 生成阳离子自由基、[Zn2Cl5]中性自由基和水合电子, 观察到胆碱激发三线态的存在, 并测定了离子液体光电离的量子产额为0.04. 利用266 nm激光对离子液体、胆碱、氯化锌、氯化钠的光解行为比较, 发现胆碱阳离子的贡献很小, [Zn2Cl5]阴离子起主要作用. 采用氧化性自由基SO4•-引发离子自由基, 揭示其光电离机理, 测定离子液体的动力学反应速率常数, SO4•- 460 nm的衰减速率常数为1.3×109 L•mol-1•s-1, 320 nm离子自由基瞬态产物的生成速率常数为1.5×109 L•mol-1•s-1, 两者很接近, 说明SO4•-自由基的衰减与瞬态自由基的生成是同步的.  相似文献   

13.
合成了四氯合锌酸正九烷铵复合物(C9H19NH3)2ZnCl4(s) (C9Zn(s)), 并使用X射线单晶衍射、化学分析以及元素分析确定了其晶体结构和化学组成. 利用其晶体学数据推导了C9Zn(s)的晶格能UPOT=952.94 kJ·mol-1. 在298.15 K下, 利用恒温环境溶解-反应热量计测定了C9Zn(s)在不同质量摩尔浓度下的摩尔溶解焓. 在Pitzer电解质溶液理论基础上确定了C9Zn(s)的无限稀释摩尔溶解焓ΔsΗm=20.09 kJ·mol-1, 以及Pitzer焓参数组合(4βC9H19NH3,Cl(0)L+2βZn,Cl(0)LC9H19NH3,ZnL)和(2βC9H19NH3,Cl(1)LZn,Cl(1)L)的值.  相似文献   

14.
通过小样品精密自动绝热量热计测定了自己合成并提纯的苯氧威 (C17H19NO4) 在79 ~ 360 K温区的低温摩尔热容。量热实验发现, 该化合物在320 ~ 330 K温区, 有一固 - 液熔化相变过程, 其熔化温度为(326.31±0.14)K, 摩尔熔化焓、摩尔熔化熵及化合物的纯度分别为:(26.98±0.04) kJ• mol-1和(82.69 0.09)J•mol-1•K-1和 (99.53±0.01 )%。并计算出了80-360 K的热力学参数。用分步熔化法得到绝对纯化和物的熔点为326.60±0.06 K。用差示扫描量热 (DSC) 技术对该物质的固-液熔化过程作了进一步研究,结果与绝热量热法一致。  相似文献   

15.
在干燥的氩气氛中, 于363 K下缓慢混合等摩尔的氯化1-甲基-3-丁基咪唑(BMIC)和高纯无水ZnCl2, 得到了无色透明的离子液体BMIC/ZnCl2. 在298.15 K下, 用具有恒温环境的溶解反应热量计测定了不同浓度离子液体BMIC/ZnCl2在水中的溶解焓, 依据Pitzer方程拟合得到它们的标准摩尔溶解焓ΔsH0m和Pitzer溶解焓参数. 利用标准摩尔溶解焓估算了离子液体的水化焓.  相似文献   

16.
利用微波技术合成了配合物[Gd2(Gly)6(H2O)4](ClO4)6(H2O)5, 进行了化学成分分析、红外表征和热重分析. 应用X衍射仪测定其晶体结构, 该晶体为一维链结构, 属三斜晶系, P 空间群, 晶胞参数: a=1.1569(17) nm, b=1.4138(2) nm, c=1.5642(2) nm, α=96.910(2)°, β=102.735(2)°, γ=105.512(2)°, V=2.3606(6) nm3, Z=2, Dc=2.144 g•cm-3. 采用精密溶解-反应量热计, 通过设计热化学循环, 计算出了该配合物的标准摩尔生成焓为 -(7960.73±3.23) kJ•mol-1.  相似文献   

17.
研究了N,N,N',N'-四辛基-3-氧戊二酰胺(TODGA)溶于疏水性离子液体咪唑类离子液体1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐([C2mim][NTf2])中对硝酸水溶液体系中四价钍离子(Th4+)的萃取行为.详细考察了接触时间、酸度、Th4+浓度、TODGA浓度、温度对TODGA/[C2mim][NTf2]体系萃取性能的影响.作为对比,我们还考察了TODGA在传统有机溶剂异辛烷中对Th4+的萃取.结果表明:TODGA/[C2mim][NTf2]体系对Th4+的萃取是吸热反应,且在50 ℃下,能在5 min内达到平衡.萃取体系随着酸度对Th4+的萃取性能先降后增大;Th4+浓度的增大,TODGA浓度的降低,对Th4+的萃取性能下降.TODGA在离子液体萃取体系中比在有机体系中有更好的Th4+萃取效果,特别是在低酸条件下.通过萃取机理研究,推测出在低酸下萃取反应是离子交换且TODGA与Th4+配比为2∶1,在高酸下萃取是中性配位.  相似文献   

18.
以高氯酸钐和缬氨酸为原料在蒸馏水中合成了一种稀土高氯酸盐-缬氨酸配合物[Sm2(L-α-Val)4(H2O)8](ClO4)6。利用TG/DTG、化学和元素分析、FTIR等技术表征了配合物的结构,确定其组成为:[Sm2(L-α-Val)4(H2O)8](ClO4)6。用精密绝热量热仪测量了它在78~371 K温区的热容,用最小二乘法将该温区的热容对温度进行拟合,得到了热容随温度变化的多项式方程。用此方程进行数值积分,得到每隔5 K的舒平热容值和相对于298.15 K的热力学函数值。根据TG/DTG结果,推测了该配合物的热分解机理。另外,依据Hess定律,通过设计合理的热化学循环,利用等温环境溶解-反应热量计分别测量量热反应的反应物和产物在所选溶剂中的溶解焓,从而确定反应的反应焓为:ΔrHm?=(24.83±0.85) kJ·mol-1。最后,利用反应的反应焓和其它反应物和产物已知的热力学数据计算出配合物的标准摩尔生成焓为:-(8 010.01± 3.90) kJ·mol-1。  相似文献   

19.
6-氨基己酸及2-氨基乙磺酸C60加成物的合成及溶解性   总被引:3,自引:0,他引:3  
水溶性Fullerenes (C60)衍生物的制备对于C60的生物学研究具有十分重要的意义. 氨基酸与C60的胺化反应可得到水溶性的氨基酸C60衍生物. 以C60与过量6-氨基己酸或2-氨基乙磺酸(摩尔比为1∶10)于80 ℃搅拌反应24 h, 分别得到加成度为5和4的氨基酸C60主产物, 产率按加入的C60计算分别为30%, 28%. 氨基酸碳链的长度及加成产物在反应体系中能否及时沉淀析出影响和控制着加成度的大小. C60[NH(CH2)5COOH]5H5 (3a), C60(NHCH2CH2SO3H)4H4 (6a)用柱层析进一步纯化, 其结构组成经元素分析, 1H NMR, 13C NMR, IR所证实. 6a的水溶性受溶液pH的影响较小, 3a在不同pH缓冲溶液中的溶解性用光谱法测定, 分别为: pH=10.25时为71.81 mg•mL-1, pH=7时为23.68 mg•mL-1, pH=3.36时为10.12 mg•mL-1. 在波长273 nm处, 3a的摩尔消光系数为ε=3.43×104 L•mol-1•cm-1.  相似文献   

20.
邸友莹  高胜利  谭志诚  孙立贤 《化学学报》2007,65(14):1299-1304
利用精密自动绝热热量计直接测定了配合物Zn(Met)SO4•H2O(s) 在78~370 K温区的摩尔热容. 通过热容曲线的解析得到该配合物的起始脱水温度为T0=329.50 K. 将该温区的摩尔热容实验值用最小二乘法拟合得到摩尔热容 (Cp,m)对温度(T)的多项式方程, 并且在此基础上计算出了它的舒平热容值和各种热力学函数值. 依据Hess定律, 通过设计热化学循环, 选择体积为100 cm3、浓度为2 mol•L-1的盐酸作为量热溶剂, 利用等温环境溶解-反应热量计, 测定和推算出该配合物的标准摩尔生成焓为ΔfHm0=-(2069.30±0.74) kJ•mol-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号