首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R. Negishi 《Surface science》2006,600(5):1125-1128
The Au silicide islands have been fabricated by additional deposition of Au on the prepared surface at 270 °C where the Si islands of magic sizes were formed on the Si(1 1 1)-(7 × 7) dimer-adatom-stacking fault substrate. The surface structure on the Au silicide islands shows the Au/Si(1 1 1)-√3 × √3 reconstructed structure although the substrate remains 7 × 7 DAS structure. The size of the Au silicide islands depends on the size distribution of the preformed Si islands, because the initial size and shape of the Si islands play important roles in the formation of the Au silicide island. We have achieved the fabrication of the Au silicide islands of about the same size (∼5 nm) and the same shape by controlling the initial Si growth and the additional Au growth conditions.  相似文献   

2.
Au island nucleation and growth on a Si(1 1 1) 7 × 7 vicinal surface was studied by means of scanning tunneling microscopy. The surface was prepared to have a regular array of step bunches. Growth temperature and Au coverage were varied in the 255-430 °C substrate temperature range and from 1 to 7 monolayers, respectively. Two kinds of islands are observed on the surface: Au-Si reconstructed islands on the terraces and three-dimensional (3D) islands along the step bunches. Focusing on the latter, the dependence of island density, size and position on substrate temperature and on Au coverage is investigated. At 340 °C and above, hemispherical 3D islands nucleate systematically on the step edges.  相似文献   

3.
The growth mode and electronic structure of Au nano-clusters grown on NiO and TiO2 were analyzed by reflection high-energy electron diffraction, a field-emission type scanning electron microscope, medium energy ion scattering and photoelectron spectroscopy. Au was deposited on clean NiO(0 0 1)-1 × 1 and TiO2(1 1 0)-1 × 1 surfaces at room temperature with a Knudsen cell at a rate of 0.25-0.35 ML/min (1 ML = 1.39 × 1015 atoms/cm2:Au(1 1 1)). Initially two-dimensional (2D) islands with thickness of one Au-atom layer grow epitaxially on NiO(0 0 1) and then neighboring 2D-islands link each other to form three-dimensional (3D)-islands with the c-axis oriented to the [1 1 1] direction. The critical size to form 3D-islands is estimated to be about 5 nm2. The shape of the 3D-islands is well approximated by a partial sphere with a diameter d and height h ranging from 2.0 to 11.8 nm and from 0.95 to 4.2 nm, respectively for Au coverage from 0.13 to 4.6 ML. The valence band spectra show that the Au/NiO and Au/TiO2 surfaces have metallic characters for Au coverage above 0.9 ML. We observed Au 4f spectra and found no binding energy shift for Au/NiO but significant higher binding energy shifts for Au/TiO2 due to an electron charge transfer from Au to TiO2. The work function of Au/NiO(0 0 1) gradually increases with increase in Au coverage from 4.4 eV (NiO(0 0 1)) to 5.36 eV (Au(1 1 1)). In contrast, a small Au deposition(0.15 to 1.5 ML) on TiO2(1 1 0) leads to reduction of the work function, which is correlated with an electron charge transfer from Au to TiO2 substrate.  相似文献   

4.
We provide an overview of structure and reactivity of selected bimetallic single crystal electrodes obtained by the method of spontaneous deposition. The surfaces that are described and compared are the following: Au(1 1 1)/Ru, Pt(1 1 1)/Ru and Pt(1 1 1)/Os. Detailed morphological information is presented and the significance of this work in current and further study of nanoisland covered surfaces in the catalytic and spectroscopic perspective is highlighted. All surfaces were investigated by in situ STM and by electroanalytical techniques. The results confirm our previous data that nanosized Ru islands are formed with specific and distinctive structural features, and that the Ru growth pattern is different for Au(1 1 1) and Pt(1 1 1). For Au(1 1 1), Ru is preferentially deposited on steps, while a random and relatively sparse distribution of Ru islands is observed on terraces. In contrast, for Ru deposited on Pt(1 1 1), a homogeneous deposition over all the Pt(1 1 1) surface was found. Os is also deposited homogeneously, and at a much higher rate than Ru, and even within a single deposition it forms a large proportion of multilayer islands. On Au(1 1 1), the Ru islands on both steps and terraces reach the saturation coverage within a short deposition time, and the Ru islands grow to multilayer heights and assume hexagonal shapes. On Pt(1 1 1), the Ru saturation coverage is reached relatively fast, but when a single deposition is applied, Ru nanoislands of mainly monoatomic height are formed, with the Ru coverage not exceeding 0.2 ML. For Ru deposits on Pt(1 1 1), we demonstrate that larger and multilayer islands obtained in two consecutive depositions can be reduced in size--both in height and width--by oxidizing the Ru islands and then by reducing them back to a metallic state. A clear increase in the Ru island dispersion is then obtained. However, methanol oxidation chronoamperometry shows that the surface with such a higher dispersion is less active to methanol oxidation than the initial surface. A preliminary interpretation of this effect is provided. Finally, we studied CO stripping reaction on Pt(1 1 1)/Ru, Au(1 1 1)/Ru and on Pt(1 1 1)/Os. We relate CO oxidation differences observed between Pt(1 1 1)/Ru and Pt(1 1 1)/Os to the difference in the oxophilicity of the two admetals. In turn, the difference in the CO stripping reaction on Pt(1 1 1)/Ru and Au(1 1 1)/Ru with respect to the Ru islands is linked to the effect of the substrate on the bond strength and/or adlayer structure of CO and OHads species.  相似文献   

5.
T. Okazawa  Y. Kido 《Surface science》2006,600(19):4430-4437
Growth modes and electronic properties were analyzed for Au nano-particles grown on stoichiometric and reduced TiO2(1 1 0) substrates by medium energy ion scattering (MEIS) and photoelectron spectroscopy(PES) using synchrotron-radiation-light. Initially, two-dimensional islands (2D) with a height of one and two atomic layers grow and higher coverage increases the islands height to form three-dimensional (3D) islands for the stoichiometric TiO2(1 1 0) substrate. In contrast, 3D islands start to grow from initial stage with a small Au coverage (?0.1 ML, 1 ML = 1.39 × 1015  atoms/cm2: Au(1 1 1)) probably due to O-vacancies acting as a nucleation site. Above 0.7 ML, all the islands become 3D ones taking a shape of a partial sphere and the Au clusters change to metal for both substrates. We observed the Au 4f and Ti 3p core level shifts together with the valence band spectra. The Ti 3p peak for the O-deficient surface shifts to higher binding energy by 0.25 ± 0.05 eV compared to that for the stoichiometric surface, indicating downward band bending by an electron charge transfer from an O-vacancy induced surface state band to n-type TiO2 substrate. Higher binding energy shifts of Au 4f peaks observed for both substrates reveal an electron charge transfer from Au to TiO2 substrates. The work functions of Au nano-particles supported on the stoichiometric and reduced TiO2 substrates were also determined as a function of Au coverage and explained clearly by the above surface and interface dipoles.  相似文献   

6.
Xueing Zhao 《Surface science》2007,601(12):2445-2452
This article reports photoemission and STM studies for the adsorption and dissociation of water on Ce-Au(1 1 1) alloys and CeOx/Au(1 1 1) surfaces. In general, the adsorption of water at 300 K on disordered Ce-Au(1 1 1) alloys led to O-H bond breaking and the formation of Ce(OH)x species. Heating to 500-600 K induced the decomposition or disproportionation of the adsorbed OH groups, with the evolution of H2 and H2O into gas phase and the formation of Ce2O3 islands on the gold substrate. The intrinsic Ce ↔ H2O interactions were explored by depositing Ce atoms on water multilayers supported on Au(1 1 1). After adsorbing Ce on ice layers at 100 K, the admetal was oxidized immediately to yield Ce3+. Heating to room temperature produced finger-like islands of Ce(OH)x on the gold substrate. The hydroxyl groups dissociated upon additional heating to 500-600 K, leaving Ce2O3 particles over the surface. On these systems, water was not able to fully oxidize Ce into CeO2 under UHV conditions. A complete Ce2O3 → CeO2 transformation was seen upon reaction with O2. The particles of CeO2 dispersed on Au(1 1 1) did not interact with water at 300 K or higher temperatures. In this respect, they exhibited the same reactivity as does a periodic CeO2(1 1 1) surface. On the other hand, the Ce2O3/Au(1 1 1) and CeO2−x/Au(1 1 1) surfaces readily dissociated H2O at 300-500 K. These systems showed an interesting reactivity for H2O decomposition. Water decomposed into OH groups on Ce2O3/Au(1 1 1) or CeO2−x/Au(1 1 1) without completely oxidizing Ce3+ into Ce4+. Annealing over 500 K removed the hydroxyl groups leaving behind CeO2−x/Au(1 1 1) surfaces. In other words, the activity of CeOx/Au(1 1 1) for water dissociation can be easily recovered. The behavior of gold-ceria catalysts during the water-gas shift reaction is discussed in light of these results.  相似文献   

7.
Homoepitaxial growth of Au on Bi-covered Au(1 1 1) was studied at room temperature using reflection high-energy electron diffraction (RHEED) and Auger electron spectroscopy (AES). From observations of RHEED it is found that the Au(1 1 1) (23 × 1) reconstruction structure changes to a (1 × 1) by about 0.16-0.5 ML deposition of Bi and to a (2√3 × 2√3)R30° by about 1.0 ML deposition of Bi, respectively. The surface morphology evolution by Bi deposition leads to a change of Au homoepitaxial growth behavior from layer-by-layer to step flow. This indicates that the surface diffusion distance of Au atoms on the Bi-precovered (1 × 1) and (2√3 × 2√3)R30° surfaces is longer than that on the Au(1 1 1) (23 × 1) clean surfaces. A strong surface segregation of Bi was found at top of surface. It is concluded that Bi atoms acted as an effective surfactant in the Au homoepitaxial growth by promoting Au intralayer mass transport.  相似文献   

8.
The adsorption of CO on Au(3 1 0) and Au(3 2 1) was studied using a combination of thermal desorption spectroscopy and high resolution core level photoemission spectroscopy. These vicinal Au surfaces both have 6-fold coordinated atoms at the step edges but have a different terrace structure. The CO adsorption behavior was found to be very similar for both surfaces. Three different desorption peaks due to chemisorbed CO were identified, which desorb around 100 K(α), 120 K(β) and 180 K(γ), respectively. The C1s and O1s spectra of the chemisorbed CO show a complex shake-up structure. Our experimental results indicate that CO only adsorbs on the step atoms. The different desorption peaks are explained by substrate-mediated long-range interactions between the adsorbates. Comparison with literature results shows that the CO adsorption energy is not only dependent on the coordination number of the Au atoms, but that the exact geometrical structure of the surface also plays a role.  相似文献   

9.
Au/TiO2/Ru(0 0 0 1) model catalysts and their interaction with CO were investigated by scanning tunneling microscopy and different surface spectroscopies. Thin titanium oxide films were prepared by Ti deposition on Ru(0 0 0 1) in an O2 atmosphere and subsequent annealing in O2. By optimizing the conditions for deposition and post-treatment, smooth films were obtained either as fully oxidized TiO2 or as partly reduced TiOx, depending on the preparation conditions. CO adsorbed molecularly on both oxidized and reduced TiO2, with slightly stronger bonding on the reduced films. Model catalyst surfaces were prepared by depositing submonolayer quantities of Au on the films and characterized by X-ray photoelectron spectroscopy and scanning tunneling microscopy. From X-ray photoelectron spectroscopy, a weak interaction between the Au and the TiO2 substrate was found. At 100 K CO adsorption occurred on both the TiO2 film and on the Au nanoparticles. CO desorbed from the Au particles with activation energies between 53 and 65 kJ/mol, depending on the Au coverage. If the Au deposit was annealed to 770 K prior to CO exposure, the CO adsorption energy decreased significantly. STM measurements revealed that the Au particles grow upon annealing, but are not encapsulated by TiOx suboxides. The higher CO adsorption energy observed for smaller Au coverages and before annealing is attributed to a significantly stronger interaction of CO with mono- and bilayer Au islands, while for higher particles, the adsorption energy becomes more bulk-like. The implications of these effects on the known particle size effects in CO oxidation over supported Au/TiO2 catalysts are discussed.  相似文献   

10.
In order to grow magnetic layers on silicon substrates, a non-magnetic buffer layer is often needed to avoid silicide formation and to reproduce the perpendicular magnetic anisotropy obtained on metal single crystals, as in the case of Co on Au(1 1 1) and Pt(1 1 1). In this context, we have studied the electrochemical growth of Au buffer layers, and show that it is possible to obtain different film morphologies on hydrogen-terminated vicinal Si(1 1 1) surfaces by varying the electrochemical deposition parameters and solution composition. Two different morphologies have been obtained as observed by atomic force microscopy: continuous 2D Au films (chloride solution at pH 4), and films consisting in flat top 3D Au islands decorating the Si(1 1 1) step edges (cyanide solution at pH 14). X-ray diffraction measurements reveal that the gold layer and islands have Au(1 1 1) orientation and are in epitaxy with the Si(1 1 1) surface. In the case of islands, the lateral facets have also Au(1 1 1) orientation. Results are discussed within a model in which the breaking of the Si-H surface bonds plays a major role in the Au nucleation and growth mechanisms.  相似文献   

11.
Using scanning tunneling microscopy we have studied the reconstruction on Au(1 1 n) surfaces in ultra-high vacuum and in electrolyte. Similar to the well-known (5 × 20) quasi-“hex” reconstruction on Au(0 0 1), the reconstruction consists of parallel reconstruction lines along the steps indicative of a higher atom density in the first Au layer. In contrast to nominally flat Au(0 0 1) where the reconstruction period is 1.44 nm, we find considerably larger reconstruction periods (1.8−1.96 nm) on incidentally flatter regions of nominal Au(1 1 9), Au(1 1 11), and Au(1 1 17) surfaces. The enlarged reconstruction period is attributed to the stress field on stepped surfaces. In agreement with previous studies we find a reconstruction free zone at the step edges.  相似文献   

12.
The epitaxial growth of Pd adlayers electrochemically deposited onto Au(1 0 0) has been studied by LEED, RHEED and AES. For the first 6 ML, the Pd deposits grow pseudomorphically on Au(1 0 0) with a lateral expansion of 4.5% with respect to bulk Pd. The strain in the expanded commensurate (1 × 1) Pd layers on Au(1 0 0) begins to be relieved at the Pd coverage between 6 and 9 ML range by formation of a compressed Pd film with respect to Au(1 0 0) surface and the compression increases continuously with thickness. At ca. 20 ML Pd the lattice constant of the film approaches to the bulk Pd and three-dimensional Pd islands develop since around 30 ML coverage. No superstructure due to the Pd-Au surface alloy can be found for coverages from monolayer up to 30 ML Pd on Au(1 0 0). A c(2 × 2) phase has been observed on the Pd-deposited Au(1 0 0) electrodes, which is ascribed to an ordered Cl adlayers adsorbed on Pd adlayers rather than a Pd-Au surface alloy.  相似文献   

13.
E. Sibert  F. Maroun 《Surface science》2004,572(1):115-125
The electrodeposition of Au on Pt(1 1 1) from electrolytes containing μM concentrations of was studied by in situ scanning tunneling microscopy. Under these conditions the Au flux is limited by diffusion in the electrolyte over a wide potential range, which allows to assess the effect of the electrochemical environment on the growth kinetics. Similar to gas phase metal deposition Au film growth proceeds via nucleation and lateral growth of Au monolayer islands, with the saturation island density strongly depending on the deposition potential and on the anion species in the electrolyte. For deposition in H2SO4 solution the saturation island density continuously increases with increasing potential between −0.2 and 0.5 V (SCE), whereas in Cl-containing H2SO4 it first decreases and then increases again. Following nucleation and growth theories this behavior can be attributed to potential-induced changes of the Au surface mobility, caused by changes in the density and structure of coadsorbed sulfate/bisulfate and chloride adlayers. Under conditions of high Au surface mobility multilayer growth proceeds via a typical Stranski-Krastanov growth mode, with layer-by-layer growth of a pseudomorphic Au film up to 2 ML and 3D growth of structurally relaxed islands at higher coverage, indicating thermodynamic control under these conditions.  相似文献   

14.
In situ electrochemical scanning tunneling microscopy (STM) has been used to examine the structures of benzenethiol adlayers on Au(1 0 0) and Pt(1 0 0) electrodes in 0.1 M HClO4, revealing the formation of well-ordered adlattices of Au(1 0 0)-(√2 × √5) between 0.2 and 0.9 V and Pt(1 0 0)-(√2 × √2)R45° between 0 and 0.5 V (versus reversible hydrogen electrode), respectively. The coverage of Au(1 0 0)-(√2 × √5) is 0.33, which is identical to those observed for upright alkanethiol admolecules on Au(1 1 1). In comparison, the coverage of Pt(1 0 0)-(√2 × √2)R45° - benzenethiol is 0.5, much higher than those of thiol molecules on gold surfaces. This result suggests that benzenethiol admolecules on Pt(1 0 0) could stand even more upright than those on Au(1 0 0). All benzenethiol admolecules were imaged by the STM as protrusions with equal corrugation heights, suggesting identical molecular registries on Au(1 0 0) and Pt(1 0 0) electrodes, respectively. Modulation of the potential of a benzenethiol-coated Au(1 0 0) electrode resulted in irreversible desorption of admolecules at E ? 0.1 V (vs. reversible hydrogen electrode) and oxidation of admolecules at E ? 0.9 V. In contrast, benzenethiol admolecule was not desorbed from Pt(1 0 0) at potentials as negative as the onset of hydrogen evolution. Raising the potential rendered deposition of more benzenethiol molecules before oxidation of admolecules commenced at E > 0.9 V.  相似文献   

15.
N. Zhu  T. Komeda 《Surface science》2007,601(8):1789-1794
We investigate the structure of submonolayer film of 4,4′-biphenyl dicarboxylic acid (BDA) molecules on Au(1 1 1)-22 × √3 reconstructed surface with the use of scanning tunneling microscopy (STM). The BDA molecules form ordered structures on Au(1 1 1) surface which are commensurate with the substrate. We have concluded that the molecule-molecule interaction is mainly through hydrogen bonding formed by a straight dimer of BDA molecules. The straight dimer can be expressed as 4s + 2t or its six crystallographic equivalents using the unit vectors of the gold substrate of s and t. The length of hydrogen bonding (O-H-O) is estimated to be 0.31 nm assuming nearest neighbor distance of gold atoms of 0.275 nm. The ordering shows a clear contrast with the case of BDA on Cu(1 0 0) surface [S. Stepanow, N. Lin, F. Vidal, A. Landa, M. Ruben, J.V. Barth, K. Kern, Nanoletters 5 (2005) 901] in which a square type of ordering of molecules is observed by the formation of hydrogen bonding between a carboxylate (COO) and a benzene ring. The clear difference of the ordered structure on Cu(1 0 0) and Au(1 1 1) surface demonstrates that the absence (presence) of deprotonation of carboxyl group of BDA molecule on Au(1 1 1) (Cu(1 0 0)) switches the straight and square type ordering of BDA molecules.  相似文献   

16.
Auger Electron Spectroscopy (AES), Low Energy Electron Diffraction (LEED) and Photoelectron Yield Spectroscopy (PYS) measurements have been used to monitor the interaction of gold (Au) deposits on InSe/Si(1 1 1) substrate. Au has been sequentially deposed under ultra-high vacuum onto 40 Å-thick film of layered semiconductor InSe which is epitaxially grown by molecular beam epitaxy (MBE) on a Si(1 1 1)1 × 1-H substrate and kept at room temperature. Au coverage varies from 0.5 monolayer to 20 monolayers (ML) (in terms of InSe atomic surface plane: 1 ML = 7.2 1014 at/cm2) which is corresponding to 1.30 Å of Au-metal. The Au/InSe/Si(1 1 1) system was characterized as function of Au deposit, we noticed an interaction at room temperature starts as an apparent intercalation process until 5 ML. Beyond this dose Au islands begin to form on the sample surface without interaction with InSe substrate, thus the interface is far from to be a simple junction Au-InSe.  相似文献   

17.
M. Krawiec  M. Kisiel 《Surface science》2006,600(8):1641-1645
The electronic structure of Si(1 1 1)-(6 × 6)Au surface covered with submonolayer amount of Pb is investigated using scanning tunneling spectroscopy. Already in small islands of Pb with thickness of 1 ML Pb(1 1 1) and with the diameter of only about 2 nm we detected the quantized electronic state with energy 0.55 eV below the Fermi level. Similarly, the I(V) characteristics made for the Si(1 1 1)-(6 × 6)Au surface reveal a localized energy state 0.3 eV below the Fermi level. These energies result from fitting of the theoretical curves to the experimental data. The calculations are based on tight binding Hubbard model. The theoretical calculations clearly show prominent modification of the I(V) curve due to variation of electronic and topographic properties of the STM tip apex.  相似文献   

18.
The interaction of sulfur with gold surfaces has attracted considerable interest due to numerous technological applications such as the formation of self-assembled monolayers and as a chemical sensor. Here, we report on the interaction of sulfur with Au(1 1 1) at two different temperatures (300 K and 420 K) studied by real-time scanning tunnelling microscopy, low energy electron diffraction and Auger electron spectroscopy. In the low coverage regime (<0.1 ML), S adsorption lifts the herringbone reconstruction of the clean Au(1 1 1) surface indicating a lateral expansion of the surface layer. An ordered (√3 × √3)R30° sulfur adlayer develops as the coverage reaches ∼0.3 ML. At higher S coverages (>0.3 ML) gold surface atoms are removed from regular terrace sites and incorporated into a growing gold sulfide phase. At 300 K this process leads to the formation of a rough pit and mound surface morphology. This gold sulfide exhibits short-range order and an incommensurate, long-range ordered AuS phase develops upon annealing at 450-525 K. In contrast, formation of an ordered AuS phase via rapid step-retraction rather than etch pit formation is observed during S-interaction with Au(1 1 1) surfaces at 420 K. Our results shed new light on the S-Au(1 1 1) interaction.  相似文献   

19.
D.B. Dańko 《Surface science》2006,600(11):2258-2267
The influence of temperature on the growth process of ultra-thin Ag and Au layers on the Mo(1 1 1) surface was investigated. At 300 K growth of the Stranski-Krastanov type was found for Ag; for Au growth of the monolayer plus simultaneous multilayers type was found, where a base layer is one physical layer. The first three geometrical adsorbed layers for Ag are thermally stable. For annealed Au layers triangle features with base side length from 15 to 35 Å were formed for θ < 6 monolayer (ML), and for θ > 6 ML part of the Au formed a flat adlayer with Au atoms grouped in equilateral triangles with side length 7 Å. The presence of Au layers does not cause faceting, layers are not smooth which could be caused by the fact that Au does not wets the substrate. For Ag thick layers reversible wetting/non-wetting transition was observed at 600 K. Ag layers on Mo(1 1 1) surface did not lead to faceting.  相似文献   

20.
Adsorption of 0.5 monolayers (ML) of Sb on the Au(1 1 0) surface resulted in the formation of a c(2 × 2) surface reconstruction. Analysis of surface X-ray diffraction data by a direct method revealed the existence of an ordered substitutional surface alloy, with every other hollow site occupied by Au and Sb atoms. Quantitative conventional χ2 refinement showed a contraction of 0.12 ± 0.03 Å in the spacing of the first Au layer to the second, an expansion of 0.13 ± 0.03 Å in the second-to-third layer distance, and an inward Sb displacement (rumpling) of 0.21 ± 0.04 Å. This surface phase proved to be extremely robust, with the long-range order of this arrangement remaining up to substrate temperatures of 900 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号