首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adsorption of H2 molecule on the Ti (0 0 0 1)-(2 × 1) surface was studied by density functional theory with generalized gradient approximation (GGA). The parallel and vertical absorption cases were investigated in detail by adsorption energy and electronic structure analysis, we obtained three stable configurations of FCC-FCC (the two H atoms adsorption on the two adjacent fcc sites of Ti (0 0 0 1) surface, respectively), HCP-HCP (the two H atoms adsorption on the two adjacent hcp sites of Ti (0 0 0 1) surface, respectively) and FCC-HCP (the one H atom adsorption on the fcc site and the other adsorption on the near hcp site) based on the six different parallel adsorption sites after the H2 molecule dissociates. However, all the end configurations of four vertical adsorption sites were unstable, H2 molecule was very easy to desorb from Ti surface. The H-H bond breaking and Ti-H bond forming result from the H2 molecule dissociation. H-H bond breaking length ranges from 1.9 Å to 2.3 Å for different adsorption configurations due to the strong Ti-H bond forming. The H2 dissociative approach and the end stable configurations formation in parallel adsorption processes are attributed to the quantum mechanics steering effects.  相似文献   

2.
The structure of the Co thin films on Pd(1 1 1) and the effect of the CO adsorption on Co thin films were studied by Co K-edge surface X-ray absorption fine structure (XAFS). The polarization dependences of the X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectra indicate that Co thin films grow in the fcc stacking mode on Pd(1 1 1) up to 12 ML. The analysis of the nearest neighbor shell shows little mechanical strain at the interface, indicating that Co atom does not grow pseudomorphically on Pd(1 1 1). There is no alloy-like structure at the interface. CO adsorption causes no structural change of the Co thin films but modifies the Co surface electronic state. These structural studies provide deep insight in the magnetic property of the Co thin films on Pd(1 1 1).  相似文献   

3.
I. Nakamura 《Surface science》2006,600(16):3235-3242
Reactions between NO and CO on Rh(1 1 1) surfaces were investigated using infrared reflection absorption spectroscopy, X-ray photoelectron spectroscopy, and temperature-programmed desorption. NO adsorbed on the fcc, atop, and hcp sites in that order, whereas CO adsorbed initially on the atop sites and then on the hollow (fcc + hcp) sites. The results of experiments with NO exposure on CO-preadsorbed Rh(1 1 1) surfaces indicated that the adsorption of NO on the hcp sites was inhibited by preadsorption of CO on the atop sites, and NO adsorption on the atop and fcc sites was inhibited by CO preadsorbed on each type of site, which indicates that NO and CO competitively adsorbed on Rh(1 1 1). From a Rh(1 1 1) surface with coadsorbed NO and CO, N2 was produced from the dissociation of fcc-NO, and CO2 was formed by the reaction of adsorbed CO with atomic oxygen from dissociated fcc-NO. The CO2 production increased remarkably in the presence of hollow-CO. Coverage of fcc-NO and hollow-CO on Rh(1 1 1) depended on the composition ratio of the NO/CO gas mixture, and a gas mixture with NO/CO ? 1/2 was required for the co-existence of fcc-NO and hollow-CO at 273 K.  相似文献   

4.
Adsorption of CO molecules and Pb atoms on the Ni(1 1 1) and Ni3Al(1 1 1) substrates is studied theoretically within an ab initio density-functional-theory approach. Stable adsorption sites and the corresponding adsorption energies are first determined for stoichiometric surfaces. The three-fold hollow sites (fcc for Pb and hcp for CO) are found most favourable on both substrates. Next, the effect of surface alloying by a substitution of selected topmost substrate atoms by Pb or Ni atoms on the adsorption characteristics is investigated. When the surface Al atoms of the Ni3Al(1 1 1) substrate are replaced by Ni atoms, the Pb and CO adsorption energies approach those for a pure Ni(1 1 1) substrate. The Pb alloying has a more substantial effect. On the Ni3Al(1 1 1) substrate, it reduces considerably adsorption energy of CO. On the Ni(1 1 1) substrate, CO binding strengthens slightly upon the formation of the Ni(1 1 1)p(2×2)-Pb surface alloy, whereas it weakens drastically when the Ni(1 1 1)-Pb surface alloy is formed.  相似文献   

5.
M.F. Luo  G.R. Hu 《Surface science》2009,603(8):1081-1086
With density-functional-theory calculations, we have studied coverage-dependent absorption of H atoms into the sub-surface below a face-centered-cubic (fcc) hollow site of Cu(1 1 1). Both frozen and relaxed surface lattices were considered when the atomic H migrated from the surface to the sub-surface. The potential energy curve for the absorbing H shows that the surface site is in general favored over the sub-surface site, and this trend varies little with the H coverage (0.11-0.67 ML). If the hexagonal-close-packed (hcp) hollow sites immediately vicinal to the absorbing H are pre-adsorbed with other H atoms, the surface adsorption potential is greatly increased, because of the repulsive H-H interaction, to a value near, or even greater than, the sub-surface absorption potential; when two or three H atoms (on the hcp sites) are beside the absorbing H, the energy barrier for the sub-surface absorption is decreased, whereas that for diffusion from the sub-surface to the surface is enhanced. These results indicate that, on an H-saturated Cu(1 1 1) surface (0.67 ML), the sub-surface sites below the fcc sites with two or three neighboring H atoms can trap the sub-surface H.  相似文献   

6.
Jisang Hong 《Surface science》2006,600(11):2323-2328
Based on the full-potential linearized augmented plane wave (FLAPW) calculations, various magnetic properties of ultra thin face centered cubic (fcc) Co(0 0 1) film and V adsorbed systems on Co(0 0 1) surface are explored. It was found that the V film grown on fcc Co(0 0 1) surface has large induced magnetic moment and the direction of magnetization is antiparallel to that of Co atom in the submonolayer coverage. Very interestingly, we found that the surface alloy and 0.5 ML adsorbed V/Co(0 0 1) systems have perpendicular magnetocrystalline anisotropy and the magnitude of anisotropy energy in 0.5 ML V on fcc Co(0 0 1) surface is greatly larger than that of surface alloy, while we observed in-plane magnetization in pure fcc Co(0 0 1) film. It was found that the spin-orbit interaction through spin-flip process cannot be ignored, therefore the simple relation with orbital anisotropy is not applicable in the interpretation of magnetocrystalline anisotropy.  相似文献   

7.
Density functional theory (DFT) for generalized gradient approximation calculations has been used to study the adsorption of atomic oxygen and water molecules on Ni(1 1 1) and different kind of Ni-Cr(1 1 1) surfaces. The fcc hollow site is energetically the most favorable for atomic oxygen adsorption and on top site is favorable for water adsorption. The Ni-Cr surface has the highest absorption energy for oxygen at 6.86 eV, followed by the hcp site, whereas the absorption energy is 5.56 eV for the Ni surface. The Ni-O bond distance is 1.85 Å for the Ni surface. On the other hand, the result concerning the Ni-Cr surface implies that the bond distances are 1.93-1.95 Å and 1.75 Å for Ni-O and Cr-O, respectively. The surface adsorption energy for water on top site for two Cr atom substituted Ni-Cr surface is 0.85 eV. Oxygen atoms prefer to bond with Cr rather than Ni atoms. Atomic charge analysis demonstrates that charge transfer increases due to the addition of Cr. Moreover, a local density of states (LDOS) study examines the hybridization occurring between the metal d orbital and the oxygen p orbital; the bonding is mainly ionic, and water bonds weakly in both cases.  相似文献   

8.
CO adsorption on a sulfur covered cobalt surface at 185 K has been studied using XPS, TDS, LEED, and WF measurements. As in the case of CO adsorption on the clean Co(0 0 0 1) surface, CO adsorbs and desorbs molecularly and no dissociation was observed. The saturation coverage of CO decreases linearly from 0.54 ML to 0.27 ML when the S pre-coverage increases to 0.25 ML. The WF increased during CO adsorption, but did not reach the value obtained for CO adsorption on the clean surface. The smaller work function change is explained by the reduced adsorption of CO on the sulfur-precovered surface. A reduction in the activation energy of desorption for CO from 113 kJ/mol to 88 kJ/mol was observed indicating weaker bonding of the CO molecules to the surface. The behavior of the CO/S/Co(0 0 0 1) system was explained by a combination of steric and electronic effects.  相似文献   

9.
We use core level photoelectron spectroscopy and density functional theory (DFT) to investigate the iodine-induced Pd(1 1 1)-I(√3 × √3) structure formed at 1/3 ML coverage. From the calculations we find that iodine adsorbs preferentially in the fcc hollow site. The calculated equilibrium distance is 2.06 Å and the adsorption energy is 68 kcal/mol, compared to 2.45 Å and 54 kcal/mol in the atop position. The adsorption energy difference between fcc and hcp hollows is 1.7 kcal/mol. Calculated Pd 3d surface core level shift on clean Pd(1 l 1) is 0.30 eV to lower binding energy, in excellent agreement with our experimental findings (0.28-0.29 eV). On the Pd(1 1 1)-I(√3 × √3) we find no Pd 3d surface core level shift, neither experimentally nor theoretically. Calculated charge transfer for the fcc site, determined from the Hirshfeld partitioning method, suggests that the iodine atom remains almost neutral upon adsorption.  相似文献   

10.
The adsorption energies for iodine atom on the fcc, hcp, bridge, and atop sites of the Pt(1 1 1) surface were determined using ab initio DFT method in two different unit cells. A periodic slab model is used and the obtained energies are in agreement with the corresponding experimental values extrapolated at 0 K. The charge transfer is determined by the use of the Hirshfeld partitioning scheme, and the charge transfer values follow the adsorption energy trend for different sites of the Pt(1 1 1) surface. The results show that the plane-wave DFT approach correctly describes the adsorption of iodine on the Pt(1 1 1) surface and support the use of the Hirshfeld method in surface science problems.  相似文献   

11.
The dehydrogenation of CH4 on the Co(1 1 1) surface is studied using density functional theory calculation (DFT). It is found that CH4 is favored to dissociate to CH3 and then transforms to CH2 and CH by sequential dehydrogenation, and CH4 activation into CH3 and H is the rate-determining step on the Co(1 1 1) surface. CH2 is quite unstable on Co(1 1 1) surface. CH dehydrogenation into C and H is difficult. CH3 and H prefer to adsorb on 3-fold hollow hcp and fcc sites, and CH2, CH and C prefer to adsorb on hcp sites.  相似文献   

12.
Periodic density functional theory (DFT) calculations using plane waves had been performed to systematically investigate the stable adsorption amine and its dehydrogenated reaction on Au(1 1 1) surface. The equilibrium configuration including on top, bridge, and hollow (fcc and hcp) sites had been determined by relaxation of the system. The adsorption both NH3 on top site and NH2 on bridge site is favorable on Au(1 1 1) surface, while the adsorption of NH on hollow (fcc) site is preferred. The adsorbates are adsorbed on the gold surface with the interaction between p orbital of adsorbate and the d orbital of gold atoms. The interaction between adsorbate and gold slab is more evident on the first layer than on any others. Furthermore, the dissociation reaction of NH3 on clean gold surface, as well as on the pre-covered oxygen atom and pre-covered hydroxyl group surface had been investigated. The results show that the dehydrogenated reaction energy barrier on the pre-covered oxygen gold surface is lower. The adsorbed O can promote the dehydrogenation of amine. Additionally, OH as the product of the NH3 dissociation reaction participates in continuous dehydrogenation reaction, and the reaction energy barrier is the lowest (22.77 kJ/mol). The results indicated that OHads play a key role in the dehydrogenated reaction on Au(1 1 1) surface.  相似文献   

13.
In the present work, cobalt thin films deposited directly on n-Si(1 1 1) surfaces by electrodeposition in Watts bath have been investigated. The electrochemical deposition and properties of deposits were studied using cyclic voltammetry (CV), chronoamperometry (CA), ex situ atomic force microscopy (AFM), X-ray diffraction (XRD) and alternating gradient field magnetometer (AGFM) techniques. The nucleation and growth kinetics at the initial stages of Co studied by current transients indicate a 3D island growth (Volmer-Weber); it is characterized by an instantaneous nucleation mechanism followed by diffusion limited growth. According to this model, the estimated nucleus density and diffusion coefficient are on the order of magnitude of 106 cm−2 and 10−5 cm2 s−1, respectively. AFM characterization of the deposits shows a granular structure of the electrodeposited layers. XRD measurements indicate a small grain size with the presence of a mixture of hcp and fcc Co structures. The hysteresis loops with a magnetic field in the parallel and perpendicular direction and showed that the easy magnetization axis of Co thin film is in the film plane.  相似文献   

14.
The development of devices based on magnetic tunnel junctions has raised new interests on the structural and magnetic properties of the interface Co/MgO. In this context, we have grown ultrathin Co films (≤30 Å) by molecular-beam epitaxy on MgO(0 0 1) substrates kept at different temperatures (TS). Their structural and magnetic properties were correlated and discussed in the context of distinct magnetic anisotropies for Co phases reported in the literature. The sample characterization has been done by reflection high energy electron diffraction, magneto-optical Kerr effect and ferromagnetic resonance. The main focus of the work is on a sample deposited at TS=25 °C, as its particular way of growth has enabled a bct Co structure to settle on the substrate, where it is not normally obtained without specific seed layers. This sample presented the best crystallinity, softer magnetic properties and a four-fold in-plane magnetic anisotropy with Co〈1 1 0〉 easy directions. Concerning the samples prepared at TS=200 and 500° C, they show fcc and polycrystalline structures, respectively and more intricate magnetic anisotropy patterns.  相似文献   

15.
The adsorption properties of CO on experimentally verified stepped Pt3Sn(1 0 2) surface were investigated using quantum mechanical calculations. The two possible terminations of Pt3Sn(1 0 2) were generated and on these terminations all types of possible adsorption sites were determined. The adsorption energies and geometries of the CO molecule for all those sites were calculated. The most favorable sites for adsorption were determined as the short bridge site on the terrace of pure-Pt row of the mixed-atom-ending termination, atop site at the step-edge of the pure row of pure-Pt-ending termination and atop site at the step-edge of the pure-Pt row of the mixed-atom-ending termination. The results were compared with those for similar sites on the flat Pt3Sn(1 1 0) surface considering the fact that Pt3Sn(1 0 2) has terraces with (1 1 0) orientation. The LDOS analysis of bare sites clearly shows that there are significant differences between the electronic properties of Pt atoms at stepped Pt3Sn(1 0 2) surface and the electronic properties of Pt atoms at flat (1 1 0) surface, which leads to changes in the CO bonding energies of these Pt atoms. Adsorption on Pt3Sn(1 0 2) surface is in general stronger compared to that on Pt3Sn(1 1 0) surface. The difference in adsorption strength of similar sites on these two surface terminations is a result of stepped structure of Pt3Sn(1 0 2). The local density of states (LDOS) of the adsorbent Pt and C of adsorbed CO was utilized. The LDOS of the surface metal atoms with CO-adsorbed atop and of their bare state were compared to see the effect of CO chemisorption on the electron density distribution of the corresponding Pt atom. The downward shift in energy peak in the LDOS curves as well as changes in the electron densities of the corresponding energy levels indicate the orbital mixing between CO molecular orbitals and metal d-states. The present study showed that the adsorption strength of the sites has a direct relation with their LDOS profiles.  相似文献   

16.
The crystalline structure of Co layers deposited on the Cu(0 0 1) surface was investigated with the use of the directional elastic peak electron spectroscopy (DEPES). For clean Cu(0 0 1) the experimental DEPES profiles obtained for different energies of the primary electron beam exhibit intensity maxima corresponding to the close packed rows of atoms. The Auger peak kinetics recorded during continuous Co deposition suggest the layer-by-layer growth mode. The DEPES profiles recorded for 10 monolayers (ML) of Co on Cu(0 0 1) reflect a short-range order in the adsorbate. Intensity maxima observed in the DEPES profiles for Co along [1 0 0], [0 1 0], and [1 1 0] azimuths of Cu(0 0 1) are characteristic of the face centered cubic (fcc) Co(0 0 1) layers. Low-intensity reflections and considerable background intensities were found in the low energy electron diffraction (LEED) patterns recorded from 10 ML of Co, which indicates a weak long-range order in the adsorbate. The adsorption of about 20 ML of Co results in considerable background contribution to DEPES. No reflections but a large background were observed with the use of LEED for this layer. The heating of the Co/Cu(0 0 1) system at T = 770 K leads to an increase of the short- and long-range order in the overlayer, observed in the DEPES profiles and LEED patterns, respectively. The theoretical DEPES profiles were obtained with the use of a multiple scattering approximation. A very good agreement between experimental and theoretical scans was found for the clean and covered copper substrate. The latter proves the epitaxial growth of Co layers on Cu(0 0 1).  相似文献   

17.
Adsorption of the methoxy radical on clean and on low oxygen precovered Ru(0 0 0 1) metallic surfaces has been studied by density-functional theory cluster calculations. Methoxy is predicted to be preferentially chemisorbed on both hollow sites (hcp and fcc) of such surfaces, and adopts an upright orientation (C3ν local symmetry). Such prediction is supported by the good agreement found between the calculated vibrational frequencies and the experimentally observed RAIRS spectra. Regarding the charge transfer process between the adsorbate and the surface, our results suggest that the bonding is dominantly polar covalent which arises from a charge donation from the ruthenium surface to the radical, and the co-adsorbed electronegative oxygens deplete slightly the surface electron density. However, the major difference is not induced through much O-Ru bonding, but indirectly, by lowering the valence d-band center of the system. This results in a lower adsorption energy for methoxy than on the clean Ru(0 0 0 1) surface, in accordance with experimental data. Further, accordingly to the present calculations, the radical is expected to dissociate or desorb more easily on the modified surface but with no participation from the co-adsorbed oxygen atoms.  相似文献   

18.
The previously developed kinetic Monte Carlo model of molecular oxygen adsorption on fcc (1 0 0) metal surfaces has been extended to fcc (1 1 1) surfaces. The model treats uniformly all elementary steps of the process—O2 adsorption, dissociation, recombination, desorption, and atomic oxygen hopping—at various coverages and temperatures. The model employs the unity bond index—quadratic exponential potential (UBI-QEP) formalism to calculate coverage-dependent energetics (atomic and molecular binding energies and activation barriers of elementary steps) and a Metropolis-type algorithm including the Arrhenius-type reaction rates to calculate coverage- and temperature-dependent features, particularly the adsorbate distribution over the surface. Optimal values of non-energetic model parameters (the spatial constraint, a travel distance of “hot” atoms, attempt frequencies of elementary steps) have been chosen. Proper modifications of the fcc (1 0 0) model have been made to reflect structural differences in the fcc (1 1 1) surface, in particular the presence of two different hollow sites (fcc and hcp). Detailed simulations were performed for molecular oxygen adsorption on Ni(1 1 1). We found that at very low coverages, only O2 adsorption and dissociation were effective, while O2 desorption and O2 and O diffusion practically did not occur. At a certain O + O2 coverage, the O2 dissociation becomes the fastest process with a rate one-two orders of magnitude higher than adsorption. Dissociation continuously slows down due to an increase in the activation energy of dissociation and due to the exhaustion of free sites. The binding energies of both molecular and atomic oxygen decrease with coverage, and this leads to greater mobility of atomic oxygen and more pronounced desorption of molecular oxygen. Saturation is observed when the number of adsorbed molecules becomes approximately equal to the number of desorbed molecules. Simulated coverage dependences of the sticking probability and of the atomic binding energy are in reasonable agreement with experimental data. From comparison with the results of the previous work, it appears that the binding energy profiles for Ni(1 1 1) and Ni(1 0 0) have similar shapes, although at any coverage the absolute values of the oxygen binding energy are higher for the (1 0 0) surface. For metals other than Ni, particularly Pt, the model projections were found to be too parameter-dependent and therefore less certain. In such cases further model developments are needed, and we briefly comment on this situation.  相似文献   

19.
Adsorption of carbon monoxide on Pd(3 1 1) and (2 1 1) stepped surfaces has been investigated by the extended London-Eyring-Polyani-Sato (LEPS) method constructed using a 5-parameter Morse potential. The calculated results show that there exist common characteristics of CO adsorption on the two surfaces. At low coverage, CO occupies threefold hollow site of the (1 1 1) terrace and is tilted with respect to the surface normal. Among the threefold hollow sites on the (1 1 1) terrace, the nearer the site is to the step, the greater is the influence of the step. The twofold bridge site on the (1 0 0) step is also a stable adsorption site at high coverage. Because of the different lengths of the (1 1 1) terraces, the (3 1 1) and (2 1 1) stepped surfaces have different characteristics. A number of new sites are exposed on the boundary regions, including the fourfold hollow site (H4) of the (3 1 1) surface and the fivefold hollow site (H5) of the (2 1 1) surface. At high coverage, CO resides in the H5 site of the (2 1 1) surface, but the H4 site of the (3 1 1) surface is not a stable adsorption site. This study further shows that the on-top site on the (1 0 0) step of Pd(3 1 1) is a stable adsorption site, but the same type of site on Pd(2 1 1) is not.  相似文献   

20.
Adsorption of NO on a Pt(1 1 1) surface pre-covered with a p(2 × 2) atomic oxygen layer has been studied in situ by high-resolution X-ray photoelectron spectroscopy and temperature-programmed XPS using third-generation synchrotron radiation at BESSY II, Berlin, combined with molecular beam techniques and ex situ by low energy electron diffraction and temperature-programmed desorption. O 1s XP spectra reveal that an ordered p(2 × 2)-O layer dramatically changes the adsorption behavior of NO as compared to the clean surface. The atomic oxygen occupies fcc hollow sites, and therefore blocks NO adsorption on these sites, which are energetically preferred on clean Pt(1 1 1). As a consequence, NO populates on-top sites at low coverage. At 110 K for higher coverages, NO can additionally adsorb on hcp hollow sites, thereby inducing a shift of the O 1s binding energy of atomic oxygen towards lower energies by about 0.25 eV. The bond strength of the hcp hollow NO species to the substrate is weakened by the presence of atomic oxygen. A sharp p(2 × 2) LEED pattern is observed for NO adsorption on the oxygen pre-covered surface, up to saturation coverage. The total saturation coverage of NO on Pt(1 1 1) pre-covered with varying amounts of oxygen (below 0.25 ML) decreases linearly with the coverage of oxygen. The initial sticking coefficient of NO is reduced from 0.96 on clean Pt(1 1 1) to 0.88 on a p(2 × 2) oxygen pre-covered surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号