首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
O 1s scanned-energy mode photoelectron diffraction has been used to determine the local structure of molecular water on TiO2(1 1 0). The adsorption site is found to be atop five-fold coordinated surface Ti atoms, confirming the results of published total energy calculations and STM imaging. The Ti-Ow bondlength is found to be 2.21 ± 0.02 Å, much longer than Ti-O bondlengths in bulk TiO2 and for the formate (HCOO-) species adsorbed on this surface. This is consistent with relatively weak bonding, and in general agreement with total energy calculations, although all of the published calculations yield bondlengths somewhat longer than the experimental value. Structural optimisation based on the photoelectron diffraction data also provides some information on the associated substrate relaxation. In particular, the bondlength of the five-fold coordinated surface Ti atom to the O atom directly below shows the same contraction (relative to the bulk) as is found for the clean surface, reinforcing the picture of rather weak bonding of the water to this same Ti surface atom.  相似文献   

2.
O 1s and S 2p scanned-energy mode photoelectron diffraction (PhD) data, combined with multiple-scattering simulations, have been used to determine the local adsorption geometry of the SO2 and SO3 species on a Ni(1 1 1) surface. For SO2, the application of reasonable constraints on the molecular conformation used in the simulations leads to the conclusion that the molecule is centred over hollow sites on the surface, with the molecular plane essentially parallel to the surface, and with both S and O atoms offset from atop sites by almost the same distance of 0.65 Å. For SO3, the results are consistent with earlier work which concluded that surface bonding is through the O atoms, with the S atom higher above the surface and the molecular symmetry axis almost perpendicular to the surface. Based on the O 1s PhD data alone, three local adsorption geometries are comparably acceptable, but only one of these is consistent with the results of an earlier normal-incidence X-ray standing wave (NIXSW) study. This optimised structural model differs somewhat from that originally proposed in the NIXSW investigation.  相似文献   

3.
High-resolution core-level photoemission and scanned-energy mode photoelectron diffraction (PhD) of the O 1s and N 1s states have been used to investigate the interaction of glycine with the rutile TiO2(1 1 0) surface. Whilst there is clear evidence for the presence of the zwitterion CH2COO with multilayer deposition, at low coverage only the deprotonated glycinate species, NH2CH2COO is present. Multiple-scattering simulations of the O 1s PhD data show the glycinate is bonded to the surface through the two carboxylate O atoms which occupy near-atop sites above the five-fold-coordinated surface Ti atoms, with a Ti-O bondlength of 2.12 ± 0.06 Å. Atomic hydrogen arising from the deprotonation is coadsorbed to form hydroxyl species at the bridging oxygen sites with an associated Ti-O bondlength of 2.01 ± 0.03 Å. Absence of any significant PhD modulations of the N 1s emission is consistent with the amino N atom not being involved in the surface bonding, unlike the case of glycinate on Cu(1 1 0) and Cu(1 0 0).  相似文献   

4.
Scanned-energy mode photoelectron diffraction (PhD), using the O 1s and V 2p photoemission signals, together with multiple-scattering simulations, have been used to investigate the structure of the V2O3(0 0 0 1) surface. The results support a strongly-relaxed half-metal termination of the bulk, similar to that found in earlier studies of Al2O3(0 0 0 1) and Cr2O3(0 0 0 1) surfaces based on low energy electron and surface X-ray diffraction methods. However, the PhD investigation fails to provide definitive evidence for the presence or absence of surface vanadyl (VO) species associated with atop O atoms on the surface layer of V atoms. Specifically, the best-fit structure does not include these vanadyl species, although an alternative model with similar relaxations but including vanadyl O atoms yields a reliability-factor within the variance of that of the best-fit structure.  相似文献   

5.
N 1s and O 1s scanned-energy mode photoelectron diffraction (PhD) has been used to investigate the local structure of a single enantiomer of deprotonated alanine, alaninate, NH2CH3CHCOO-, on Cu(1 1 0) in the (3 × 2) phase. The local site is found to be similar to that of glycinate on Cu(1 1 0), with the N atoms in near-atop sites and the O atoms sites consistent with bonding to single surface Cu atoms but substantially off-atop. Unlike the Cu(1 1 0)(3 × 2)pg-glycinate phase, however, in which the two molecular species per unit mesh are mirror images of one another in identical local sites, the intrinsic chirality of l-alaninate means that the two molecules per unit mesh of the (3 × 2) surface phase occupy slightly different local sites. However, an excellent fit to the PhD data can be achieved by a minor modification of the structure found in DFT calculations by R.B. Rankin and D.S. Sholl [Surf. Sci. 574 (2005) L1] in which the heights of the N and O atoms above the surface are reduced by approximately 0.1 Å. The resulting average N-Cu and O-Cu values are 2.02 and 1.98 Å, respectively, with an estimated precision of ±0.03 Å. These bondlengths are shorter than those obtained from DFT by 0.08 and 0.10 Å, respectively.  相似文献   

6.
The local geometry of OH fragments adsorbed on the Ge(0 0 1)(2 × 1) surface has been examined using O 1s scanned energy mode photoelectron diffraction. These fragments were obtained by the dissociative reaction of the clean surface with H2O. The Ge–O bond length is found to be 1.76 ± 0.02 Å and the Ge–O bond angle to be 15° ± 2° relative to the surface normal. Some information about the positions of the Ge dimer atoms has also been obtained.  相似文献   

7.
Scanned-energy mode photoelectron diffraction using the O 1s and V 2p emission perpendicular to the surface has been used to investigate the orientation and internal conformation of vanadyl phthalocyanine (VOPc) adsorbed on Au(1 1 1). The results confirm earlier indications from scanning tunnelling microscopy that the VO vanadyl bond points out of, and not into, the surface. The VO bondlength is 1.60 ± 0.04 Å, not significantly different from its value in bulk crystalline VOPc. However, the V atom in the adsorbed molecule is almost coplanar with the surrounding N atoms and is thus pulled down into the approximately planar region defined by the N and C atoms by 0.52 (+0.14/−0.10) Å, relative to its location in crystalline VOPc. This change must be attributed to the bonding interaction between the molecule and the underlying metal surface.  相似文献   

8.
Core level shift scanned-energy mode photoelectron diffraction using the two distinct components of the C 1s emission has been used to determine the structure of the Pt(1 1 1)c(√3 × 5)rect.-CO phase formed by 0.6 ML of adsorbed CO. The results confirm earlier assignments of these components to CO in atop and bridging sites, further confirm that the best structural model involves a 2:1 occupation ratio of these two sites, and provides quantitative structural parameter values. In particular the Pt-C chemisorption bondlengths for the atop and bridging sites are, respectively, 1.86 ± 0.02 Å and 2.02 ± 0.04 Å. These values are closely similar to those found in the 0.5 ML coverage c(4 × 2) phase, involving an atop:bridge occupation ratio of 1:1, obtained in earlier quantitative low energy electron diffraction studies. The results also indicate a clear tilt of the molecular axis of atop CO species in this compression phase, consistent with the finding of an earlier electron-stimulated desorption ion angular distribution investigation.  相似文献   

9.
The Sb(1 1 1) 4d5/2 core level is found to contain three components. Using photoelectron diffraction, these are assigned to photoemission from the first layer, the second layer and the bulk, respectively. The binding energy for the first and second layer atoms is found to be 120 meV lower and 330 meV higher than for the bulk atoms, respectively. As a by-product of this assignment, the geometric structure of the surface is determined. No substantial relaxations are found.  相似文献   

10.
We report on the precise location of Cl atoms chemisorbed on a Cu(0 0 1) surface and the interlayer relaxations of the metal surface. Previous studies have shown that chlorine dissociates on Cu(0 0 1) to form a c(2 × 2) chemisorbed layer with Cl atoms occupying four-fold hollow sites. A Cu-Cl interlayer spacing of 1.60 Å and a slightly expanded Cu-Cu first interlayer spacing of 1.85 Å (1.807 Å for bulk Cu) was determined by LEED. The resulting Cu-Cl bond length, 2.41 Å, is very similar to the SEXAFS value of 2.37 Å. Contradictory results were obtained by angle-resolved photoemission extended fine structure: while confirming the Cu-Cl interlayer spacing of 1.60 Å, no first Cu-Cu interlayer relaxation has been observed. On the other hand, a small corrugation of the second Cu layer was pointed out. We carried out a detailed structural determination of the Cu(0 0 1)-c(2 × 2)-Cl system using surface X-ray diffraction technique with synchrotron radiation. We find a Cu-Cl interlayer spacing of 1.584(5) Å and confirm the expansion of the first Cu-Cu interlayer, with an average spacing of 1.840(5) Å. In addition, we observe a small corrugation of the second Cu layer, with Cu atoms just below Cl atoms more tightly bound to the surface layer, and even a second Cu-Cu interlayer expansion.  相似文献   

11.
We report photoelectron diffraction (PED) experiments of weakly sub-stoichiometric TiO2(1 0 0) rutile surfaces. Apart from standard core-level PED from the Ti-2p3/2 line, we have studied valence band PED from the defect induced Ti-3d states in the insulating band gap. For maximum yield, the latter were resonantly excited at the Ti-2p absorption edge. The PED patterns have been analyzed within the forward scattering approximation as well as by comparison with simulated PED patterns obtained in multiple scattering calculations. The analysis shows that the defect induced Ti-3d charge is mainly located on the second layer Ti atoms.  相似文献   

12.
Multiple scattering theory based on a cluster model is used to simulate full-hemispherical X-ray photoelectron diffraction measurements in order to verify how state of the art multiple scattering simulations are able to reproduce the experiment. This approach is applied to the Cu(1 1 1) surface for two different photoelectron kinetic energies. Differences and similarities between single and multiple scattering are discussed in comparison with experimental results. We find that the present approach gives very good results despite some limitations.  相似文献   

13.
The local adsorption structure of oxygen on Cu(1 0 0) has been studied using O 1s scanned-energy mode photoelectron diffraction. A detailed quantitative determination of the structure of the 0.5 ML (√2×2√2)R45°-O ordered phase confirms the missing-row character of this reconstruction and agrees well with earlier structural determinations of this phase by other methods, the adsorbed O atoms lying only approximately 0.1 Å above the outermost Cu layer. At much lower coverages, the results indicate that the O atoms adopt unreconstructed hollow sites at a significantly larger O–Cu layer spacing, but with some form of local disorder. The best fit to these data is achieved with a two-site model involving O atoms at Cu–O layer spacings of 0.41 and 0.70 Å in hollow sites; these two sites (also implied by an earlier electron-energy-loss study) are proposed to be associated with edge and centre positions in very small c(2×2) domains as seen in a recent scanning tunnelling microscopy investigation.  相似文献   

14.
The adsorption of CN on Cu(1 1 1), Ni(1 1 1) and Ni(1 0 0) has been investigated using density functional theory (DFT). While experimental studies of CN on Cu(1 1 1) show the molecular axis to be essentially parallel to the surface, the normally-preferred DFT approach using the generalised gradient approximation (GGA) yields a lowest energy configuration with the C-N axis perpendicular to the surface, although calculations using the local density approximation (LDA) do indicate that the experimental geometry is energetically favoured. The same conclusions are found for CN on Ni(1 1 1); on both surfaces bonding through the N atom is always unfavourable, in contrast to some earlier published results of ab initio calculations for Ni(1 1 1)/CN and Ni(1 0 0)/CN. The different predictions of the GGA and LDA approaches may lie in subtly different relative energies of the CN 5σ and 1π orbitals, a situation somewhat similar to that for CO adsorbed on Pt(1 1 1) which has proved challenging for DFT calculations. On Ni(1 0 0) GGA calculations favour a lying-down species in a hollow site in a geometry rather similar to that found experimentally and in GGA calculations for CN on Ni(1 1 0).  相似文献   

15.
A c(6 × 4) structure formed on Cu(0 0 1) by the coadsorption of Mg and Bi atoms at room temperature has been determined by a tensor low energy electron diffraction analysis. It is an ordered surface ternary alloy with a thickness of single layer, in which Mg, Bi and Cu atoms are mixed in the top layer. In the primitive unit cell, there are one Mg, four Bi, six Cu atoms and one vacancy in the top layer, and substituted Mg and Bi atoms form MgBi4 plane clusters being arranged in the c(6 × 4) order. Structural parameters show that Mg-Bi bond distances in the MgBi4 cluster are 3.01 and 3.07 Å, which are shorter than the summation of metallic radii of Mg and Bi. It is concluded that a direct, attractive interaction between Mg and Bi atoms plays critical role in the formation of the c(6 × 4) structure.  相似文献   

16.
Photoelectron diffraction in the layer-resolved mode brings more detailed information about local atomic arrangement than is obtained in the standard mode. This is demonstrated in crystals with diamond and zinc-blende structures, both for unpolarized photon excitation as well as for circularly polarized excitation. The full angular distributions of photoemission intensities are evaluated for large atomic clusters representing ideally truncated surfaces of Si(0 0 1) and GaAs(0 0 1). Highly structured layer-resolved patterns enable a more detailed understanding of the standard mode outcomes. Photoelectron intensities from atomic layers placed at different depths under the crystal surface provide direct evidence about electron attenuation and its anisotropy in crystals.  相似文献   

17.
18.
Sulphur-headgroup organic molecules have been chemisorbed on Cu(1 0 0) as self-assembled monolayers (SAMs) in highly-ordered two-fold symmetry structures, and the electronic states induced at the interface have been measured by photoemission: a close similarity of the main interface states for methane-thiolate and mercaptobenzoxazole on Cu(1 0 0) in the same p(2 × 2)-phase is observed. The bonding states for methane-thiolate/Cu(1 0 0) in the p(2 × 2) and c(2 × 2) structures have been compared to ab-initio calculation of the total density of states (DOS) for the S/Cu(1 0 0) system in the same phases. The major role of the S-Cu bonding to determine the density of state evolution at the interface is brought to light. The observed differences in the two phases depend mainly on the charge distribution associated to the different molecular packing, with a minor role of the radical group.  相似文献   

19.
The adsorption of calcium (Ca) atoms on a Cu(0 0 1) surface has been studied by low-energy electron diffraction (LEED) at 130, 300 and 400 K. It is found that a (4 × 4) was the only LEED pattern appeared at 400 K while a quasi-hexagonal structure was formed in a wide range of submonolayer coverage at 130 K. At 300 K, the (4 × 4) LEED spots were broad and weak. The (4 × 4) structure formed at 400 K was determined by a tensor LEED I-V analysis. It is a new-type of surface alloys consisting of five substitutional Ca atoms, nine surface Cu atoms, and two atomic vacancies in the unit cell. In spite of a quite large size-difference between Ca (3.94 Å) and Cu (2.55 Å) atoms, all Ca atoms are located at the substitutional sites. Among surface alloys so far reported, the atomic size ratio between Cu and Ca in the (4 × 4), 1.54, is the largest. Optimized structural parameters reveal that large lateral displacements of surface Cu atoms, being enabled by the appearance of the vacancies, allow the formation of the (4 × 4) structure.  相似文献   

20.
We have investigated a quasi-one-dimensional structure of In/Si(1 1 1) surface using reflection high-energy positron diffraction (RHEPD), which is sensitive to the topmost surface structure under the total reflection condition. From the rocking curves, we found that In atoms are located at two different vertical positions, i.e., 0.99 Å and 0.55 Å from the Si zigzag chain in both 4 × 1 (210 K) and 8 × 2 (60 K) phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号