首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhenjun Li 《Surface science》2007,601(8):1898-1908
The formation of alloys by adsorbing gold on a Pd(1 1 1) single crystal substrate and subsequently annealing to various temperatures is studied in an ultrahigh vacuum by means of Auger and X-ray photoelectron spectroscopy. The nature of the alloy surface is probed by CO chemisorption using temperature-programmed desorption and reflection-absorption infrared spectroscopy. It is found that gold grows in a layer-by-layer fashion on Pd(1 1 1) at 300 K, and starts to diffuse into the bulk after annealing to above ∼600 K. Alloy formation results in a ∼0.5 eV binding energy decrease of the Au 4f XPS signals and a binding energy increase of the Pd 3d features of ∼0.8 eV, consistent with results obtained for the bulk alloy. The experimentally measured CO desorption activation energies and vibrational frequencies do not correlate well with the surface sites expected from the bulk alloy composition but are more consistent with significant preferential segregation of gold to the alloy surface.  相似文献   

2.
Zhipeng Chang 《Surface science》2007,601(9):2005-2011
Methanethiol adsorbed on Ru(0 0 0 1)-p(2 × 2)O has been studied by TPD and XPS. The dissociation of methanethiol to methylthiolate and hydrogen at 90 K is evidenced by the observation of hydroxyl and water. The saturation coverage of methylthiolate is ∼0.15 ML, measured by both XPS and TPD. A detailed analysis suggests that only the hcp-hollow sites have been occupied. Upon annealing the surface, water and hydroxyl desorb from the surface at ∼210 K. Methylthiolate decomposes to methyl radical and atomic sulphur via C-S cleavage between 350 and 450 K. Some methyl radicals (0.05 ML) have been transferred to Ru atoms before they decompose to carbon and hydrogen. The rest of methyl radicals desorb as gaseous phase. No evidence for the transfer of methyl radical to surface oxygen has been found.  相似文献   

3.
Monolayer Ga adsorption on Si surfaces has been studied with the aim of forming p-delta doped nanostructures. Ga surface phases on Si can be nitrided by N2+ ion bombardment to form GaN nanostructures with exotic electron confinement properties for novel optoelectronic devices. In this study, we report the adsorption of Ga in the submonolayer regime on 7 × 7 reconstructed Si(1 1 1) surface at room temperature, under controlled ultrahigh vacuum conditions. We use in-situ Auger electron spectroscopy, electron energy loss spectroscopy and low energy electron diffraction to monitor the growth and determine the properties. We observe that Ga grows in the Stranski-Krastanov growth mode, where islands begin to form on two flat monolayers. The variation in the dangling bond density is observed during the interface evolution by monitoring the Si (LVV) line shape. The Ga adsorbed system is subjected to thermal annealing and the residual thermal desorption studied. The difference in the adsorption kinetics and desorption dynamics on the surface morphology is explained in terms of strain relaxation routes and bonding configurations. Due to the presence of an energetic hierarchy of residence sites of adatoms, site we also plot a 2D phase diagram consisting of several surface phases. Our EELS results show that the electronic properties of the surface phases are unique to their respective structural arrangement.  相似文献   

4.
This study first reports the initial growth stages of sodium chloride (NaCl) on Ag(1 1 0) at room temperature. NaCl grows in bi-layer mode along its [1 0 0] axis and gives rise to (4 × 1) and (1 × 2) reconstructed domains for coverages lower than two monolayers (ML), a minimal thickness inducing a bi-dimensional closed film. In addition, a 10 ML NaCl film has been examined by low energy electron diffraction (LEED). LEED analysis leads to the dissociation of the NaCl deposit in a few minutes. The NaCl dissociation implies Cl desorption from the surface and Na remaining on it. The residual Na is arranged in the form of a (2 × 1) surface reconstruction and is found to be strongly bounded to the Ag substrate. These findings have been established by using the X-ray photoelectron spectroscopy technique.  相似文献   

5.
Growth and surface morphology of epitaxial Fe(1 1 0)/MgO(1 1 1)/Fe(1 1 0) trilayers constituting a magnetic tunnel junction were investigated by low-energy electron diffraction (LEED) and scanning tunneling microscopy (STM). STM reveals a grain-like growth mode of MgO on Fe(1 1 0) resulting in dense MgO(1 1 1) films at room temperature as well as at 250 °C. As observed by STM, initial deposition of MgO leads to a partial oxidation of the Fe(1 1 0) surface which is confirmed by Auger electron spectroscopy. The top Fe layer deposited on MgO(1 1 1) at room temperature is relatively rough consisting of clusters which can be transformed by annealing to an atomically flat epitaxial Fe(1 1 0) film.  相似文献   

6.
The c(4 × 2) structures in (0 0 1) surfaces of Si and Ge have been studied by low-energy electron diffraction (LEED). Using a proper cleaning method for the Si surface, we were able to observe clear c(4 × 2) LEED patterns up to incident energy of ∼400 eV as well as the Ge surface. Extensive experimental intensity-voltage curves allowed us to optimize the asymmetric dimer model up to the eighth layer (including the dimer layer) in depth in the dynamical LEED calculation. Optimized structural parameters are almost the same for the Si and Ge except for the height of the buckled-up atom of the asymmetric dimer. For the Ge surface, the structural parameters are in excellent agreement with those obtained by a previous theoretical calculation. The tilt angle and bond length of the dimer are 18 ± 1 (19 ± 1)° and 2.4 ± 0.1 (2.5 ± 0.1) Å for the Si(0 0 1) (Ge(0 0 1)), respectively.  相似文献   

7.
The vertical bonding distance of 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) above the Au(1 1 1) surface has been measured by the normal incidence X-ray standing wave (NIXSW) technique. The carbon skeleton of PTCDA has a vertical distance of D = (3.27 ± 0.02) Å to the Au(1 1 1) substrate. This distance corresponds very nearly to the sum of the van der Waals radii of carbon and gold, suggesting the adsorption to be a physisorptive one. In contrast, the PTCDA/Ag(1 1 1) interface which according to spectroscopic data follows the standard model of chemisorption very closely, shows a considerably smaller bonding distance of D = (2.86 ± 0.01) Å [A. Hauschild, K. Karki, B.C.C. Cowie, M. Rohlfing, F.S. Tautz, M. Sokolowski, Phys. Rev. Lett. 94 (2005) 036106, comment: Rurali et al., Phys. Lett. 95 (2005) 209205, reply: Phys. Rev. Lett. 95 (2005) 209206]. The different vertical adsorption heights of PTCDA on gold and silver are discussed in relation to the different bonding mechanisms on both noble metal surfaces.  相似文献   

8.
In situ electrochemical scanning tunneling microscopy (STM) has been used to examine the structures of benzenethiol adlayers on Au(1 0 0) and Pt(1 0 0) electrodes in 0.1 M HClO4, revealing the formation of well-ordered adlattices of Au(1 0 0)-(√2 × √5) between 0.2 and 0.9 V and Pt(1 0 0)-(√2 × √2)R45° between 0 and 0.5 V (versus reversible hydrogen electrode), respectively. The coverage of Au(1 0 0)-(√2 × √5) is 0.33, which is identical to those observed for upright alkanethiol admolecules on Au(1 1 1). In comparison, the coverage of Pt(1 0 0)-(√2 × √2)R45° - benzenethiol is 0.5, much higher than those of thiol molecules on gold surfaces. This result suggests that benzenethiol admolecules on Pt(1 0 0) could stand even more upright than those on Au(1 0 0). All benzenethiol admolecules were imaged by the STM as protrusions with equal corrugation heights, suggesting identical molecular registries on Au(1 0 0) and Pt(1 0 0) electrodes, respectively. Modulation of the potential of a benzenethiol-coated Au(1 0 0) electrode resulted in irreversible desorption of admolecules at E ? 0.1 V (vs. reversible hydrogen electrode) and oxidation of admolecules at E ? 0.9 V. In contrast, benzenethiol admolecule was not desorbed from Pt(1 0 0) at potentials as negative as the onset of hydrogen evolution. Raising the potential rendered deposition of more benzenethiol molecules before oxidation of admolecules commenced at E > 0.9 V.  相似文献   

9.
A quantitative low energy electron diffraction (LEED) analysis has been performed for the p(2 × 2)-S and c(2 × 2)-S surface structures formed by exposing the (1 × 1) phase of Ir{1 0 0} to H2S at 750 K. S is found to adsorb on the fourfold hollow sites in both structures leading to Pendry R-factor values of 0.17 for the p(2 × 2)-S and 0.16 for the c(2 × 2)-S structures. The distances between S and the nearest and next-nearest Ir atoms were found to be similar in both structures: 2.36 ± 0.01 Å and 3.33 ± 0.01 Å, respectively. The buckling in the second substrate layer is consistent with other structural studies for S adsorption on fcc{1 0 0} transition metal surfaces: 0.09 Å for p(2 × 2)-S and 0.02 Å for c(2 × 2)-S structures. The (1 × 5) reconstruction, which is the most stable phase for clean Ir{1 0 0}, is completely lifted and a c(2 × 2)-S overlayer is formed after exposure to H2S at 300 K followed by annealing to 520 K. CO temperature-programmed desorption (TPD) experiments indicate that the major factor in the poisoning of Ir by S is site blocking.  相似文献   

10.
Results for deposition and thermal annealing of gallium on the Si(1 0 0)-(2 × 1) surface achieved by synchrotron radiation photoelectron spectroscopy (SR-PES) and low energy electron diffraction (LEED) are presented. In addition to deposition of Ga on a clean surface, the influence of water adsorption on the arrangement of gallium atoms was also studied. The results on Ga deposition at a higher temperature (490 °C) are consistent with a Ga ad-dimer model showing equivalent bond arrangement of all Ga atoms for coverages up to 0.5 ML. The deposition onto a surface with adsorbed water at room temperature led to a disordered gallium growth. In this case gallium atoms bind to silicon dimers already binding fragments of adsorbed water. A subsequent annealing of these layers leads to a surface structure similar to the Ga-(2 × 2), however, it is less ordered, probably due to the presence of silicon oxides formed from water fragments.  相似文献   

11.
Surface diffusion of Pb and Bi over Cu(1 0 0) surfaces has been studied by scanning Auger microscopy techniques. The diffusion profiles of Pb and Bi have been found to be quite different. The results show that three major factors control the shapes of the surface diffusion profiles: (a) First order phase transitions, which lead to phase coexistence over specified coverage ranges, tend to produce abrupt changes in coverage versus distance profiles; (b) profiles can be affected by the existence of significant differences in the diffusion coefficients of the various phases present, and by the possibility (c) of important changes in diffusivity within a given phase, as a function of coverage, due to interactions between the diffusing atoms. In addition, it has been shown that the strong connection between diffusion profile shapes and the 2D phase diagram allows certain features of the 2D phase diagram to be determined from diffusion profiles.  相似文献   

12.
The adsorption and reactivity of SO2 on the Ir(1 1 1) and Rh(1 1 1) surfaces were studied by surface science techniques. X-ray photoelectron spectroscopy measurements showed that SO2 was molecularly adsorbed on both the Ir(1 1 1) surface and the Rh(1 1 1) surface at 200 K. Adsorbed SO2 on the Ir(1 1 1) surface disproportionated to atomic sulfur and SO3 at 300 K, whereas adsorbed SO2 on the Rh(1 1 1) surface dissociated to atomic sulfur and oxygen above 250 K. Only atomic sulfur was present on both surfaces above 500 K, but the formation process and structure of the adsorbed atomic sulfur on Ir(1 1 1) were different from those on Rh(1 1 1). On Ir(1 1 1), atomic sulfur reacted with surface oxygen and was completely removed from the surface, whereas on Rh(1 1 1), sulfur did not react with oxygen.  相似文献   

13.
The impingement and interdiffusion of adsorbed Pb and Bi layers spreading from separated 3D pure bulk sources on Cu(1 0 0) has been studied, at T = 513 K, by in situ scanning Auger microscopy. When the leading edges of the pure Pb and Bi diffusion profiles impinge, they both consist of low-coverage lattice gas surface alloyed phases. In these low-coverage phases, Pb displaces surface alloyed Bi and the point of intersection of the profiles drifts towards the Bi source. These features lead to the conclusion that Pb atoms are more strongly bound at surface alloyed sites in Cu(1 0 0) than Bi atoms. Once the total coverage (Pb + Bi) on the substrate reaches about one monolayer, Pb and Bi are dealloyed from the substrate, and the interdiffusion profiles become essentially symmetric. Pb and Bi mix in all proportions, with an interdiffusion coefficient of ∼10−13 m2/s. This is considerably smaller than the self-diffusion coefficients previously observed for pure Pb and Bi in their respective high-coverage phases, indicating that the mechanism of interdiffusion is different from that of self-diffusion. As interdiffusion proceeds, the point of intersection of the Pb and Bi profiles reverses its drift direction, leading to the conclusion that binding of Bi atoms to the Cu(1 0 0) substrate is stronger than that of Pb atoms in the highest-coverage surface dealloyed layers.  相似文献   

14.
A theoretical epitaxial growth model with realistic barriers for surface diffusion is investigated by means of kinetic Monte Carlo simulations to study the growth modes of metastable (3 3 1) nanofacets on Au and Pt(1 1 0) surfaces. The results show that under experimental atomic fluxes, the (3 3 1) nanofacets grow by 2D nucleation at low temperature in the submonolayer regime. A metastable growth phase diagram that can be useful to experimentalists is presented and looks similar to the one found for the stationary growth of the bcc(0 0 1) surface in the kinetic 6-vertex model.  相似文献   

15.
Water adsorbed on Ni(1 1 1) forms an ordered, hydrogen bonded ice structure with a (2√7 × 2√7)R19° unit cell. The 2√7 wetting structure forms as islands and persists up to saturation of the first layer. Adsorption of a fraction of a monolayer more water into a second layer destroys the 2√7 registry and creates a disordered ice film. Gas adsorption measurements indicate that the wetting layer is completely covered by a second layer of water before thicker multilayer ice forms. As the second layer is completed the film orders to form an incommensurate crystalline ice film with a hexagonal LEED pattern, oriented to the Ni close packed rows. This ordered, incommensurate structure persists as the ice multilayer grows thicker.  相似文献   

16.
We present a scanning tunneling microscopy (STM) investigation of 9-aminoanthracene (AA) on the reconstructed Au(1 1 1) surface. The bare Au(1 1 1) surface shows the herringbone reconstruction which is conserved upon deposition of the organic molecules. Most of the AA molecules are found to decorate the regions of fcc-stacking of the gold surface where a periodic linear arrangement is observed. The orientation of the long molecule axis of individual molecules is along the -directions of the Au substrate. In addition, for individual domains of the surface reconstruction, one of the three possible orientations is preferred. On substrate areas which exhibit a high step density, the steps are completely decorated by AA molecules. A detailed analysis of the STM images reveals that the molecules are located on top terrace levels. The fine structure of individual molecules on the terrace shows a clear dependence on the tunneling voltage and resembles the molecular orbitals of the free AA molecule.  相似文献   

17.
Jooho Kim  Bruce E. Koel 《Surface science》2006,600(19):4622-4632
Nanosized gold particles supported on reducible metal oxides have been reported to show high catalytic activity toward CO oxidation at low temperature. This has generated great scientific and technological interest, and there have been many proposals to explain this unusual activity. One intriguing explanation that can be tested is that of Nørskov and coworkers [Catal. Lett. 64 (2000) 101] who suggested that the “unusually large catalytic activity of highly-dispersed Au particles may in part be due to high step densities on the small particles and/or strain effects due to the mismatch at the Au-support interface”. In particular, their calculations indicated that the Au(2 1 1) stepped surface would be much more reactive towards O2 dissociative adsorption and CO adsorption than the Au(1 1 1) surface. We have now studied the adsorption of O2 and O3 (ozone) on an Au(2 1 1) stepped surface. We find that molecular oxygen (O2) was not activated to dissociate and produce oxygen adatoms on the stepped Au(2 1 1) surface even under high-pressure (700 Torr) conditions with the sample at 300-450 K. Step sites do bind oxygen adatoms more tightly than do terrace sites, and this was probed by using temperature programmed desorption (TPD) of O2 following ozone (O3) exposures to produce oxygen adatoms up to a saturation coverage of θO = 0.90 ML. In the low-coverage regime (θO ? 0.15 ML), the O2 TPD peak at 540 K, which does not shift with coverage, is attributed to oxygen adatoms that are bound at the steps on the Au(2 1 1) surface. At higher coverages, an additional lower temperature desorption peak that shifts from 515 to 530 K at saturation coverage is attributed to oxygen adsorbed on the (1 1 1) terrace sites of the Au(2 1 1) surface. Although the desorption kinetics are likely to be quite complex, a simple Redhead analysis gives an estimate of the desorption activation energy, Ed, for the step-adsorbed oxygen of 34 kcal/mol and that for oxygen at the terraces near saturation coverage of 33 kcal/mol, values that are similar to others reported on Au surfaces. Low Energy Electron Diffraction (LEED) indicates an oxygen-induced step doubling on the Au(2 1 1) surface at low-coverages (θO = 0.08-0.17 ML) and extensive disruption of the 2D ordering at the surface for saturation coverages of oxygen (θO ? 0.9 ML). Overall, our results indicate that unstrained step sites on Au(2 1 1) surfaces of dispersed Au nanoparticles do not account for the novel reactivity of supported Au catalysts for CO oxidation.  相似文献   

18.
The adsorption and reaction of vinyl acetate with the clean Pd(1 1 0) surface has been investigated using temperature programmed desorption and molecular beam reaction measurements. These show that, under low pressure conditions, the main reaction pathway above 400 K is total dehydrogenation to yield hydrogen and carbon dioxide in the gas phase, and surface carbon. This occurs at a steady state, notwithstanding the fact that carbon is being deposited continuously onto the surface. The reaction continues because the vast majority of this carbon is lost from the surface to the bulk of the sample. Between about 320-380 K the reaction profile is somewhat different; the molecule dissociates at the CH3COOCHCH2 bond, producing the most stable intermediate, the acetate, and the reaction stops after the build-up of adsorbed acetate and surface carbonaceous species. At ∼300 K, the products are very similar to those for acetaldehyde adsorption (namely, methane, CO and some surface carbon), and they evolve in a non-steady state manner due to the build up of adsorbed CO on the surface. Thus the mechanism is dominated here by dissociation at the CH3COOCHCH2 bond, and formation of the acetyl intermediate. Consideration is given to the connection between these data and vinyl acetate synthesis.  相似文献   

19.
The adsorption properties of CO on the epitaxial five-monolayer Co/Cu(1 0 0) system, where the Co overlayer has stabilized in the metastable fcc-phase, are reported. This system is known to exhibit metallic quantum well (MQW) states at energies 1 eV or greater above the Fermi level, which may influence CO adsorption. The CO/fcc-Co/Cu(1 0 0) system was explored with low energy electron diffraction (LEED), inverse photoemission (IPE), reflection-absorption infrared spectroscopy (RAIRS) and temperature programmed desorption (TPD). Upon CO adsorption, a new feature is observed in IPE at 4.4 eV above EF and is interpreted as the CO 2π level. When adsorbed at room temperature, TPD exhibits a CO desorption peak at ∼355 K, while low temperature adsorption reveals additional binding configurations with TPD features at ∼220 K and ∼265 K. These TPD peak temperatures are correlated with different C-O stretch vibrational frequencies observed in the IR spectra. The adsorption properties of this surface are compared to those of the surfaces of single crystal hcp-Co, as well as other metastable thin film systems.  相似文献   

20.
Temperature programmed desorption (TPD) and infrared reflection absorption spectroscopy (IRAS) have been used to study the adsorption, desorption, molecular orientation and conformation of 1,3-butadiene on Ag(1 1 1) at 80 K. Butadiene adsorbs weakly as an s-trans conformer with the first layer oriented parallel to the silver surface and desorbs without decomposition. A very narrow line shape of the out-of-plane modes at low submonolayer coverage indicates molecular ordering within the diluted adsorbed layer, presumably through weak π-bonding interaction with the surface and intermolecular repulsive interaction. Compression within the first layer at coverages above 0.5 ML is driven by repulsive interaction as seen in both TPD and IRAS data. The IR intensity rollover and peak broadening, together with a significant shift in the TPD peak to lower temperature, indicate a reorientation of the butadiene molecule. Adsorption in the second- and multilayer is characterized by distinct IR frequency shifts and crystal field splitting effects similar to those reported for solid butadiene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号