首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
I.V. Shvets  V. Kalinin 《Surface science》2007,601(15):3169-3178
The deposition of ultrathin Fe films on the Mo(1 1 0) surface at elevated temperatures results in the formation of distinctive nanowedge islands. The model of island formation presented in this work is based on both experiment and DFT calculations of Fe adatom hopping barriers. Also, a number of classical molecular dynamics simulations were carried out to illustrate fragments of the model. The islands are formed during a transition from a nanostripe morphology at around 2 ML coverage through a Bales-Zangwill type instability. Islands nucleate when the meandering step fronts are sufficiently roughened to produce a substantial overlap between adjacent steps. The islands propagate along the substrate [0 0 1] direction due to anisotropic diffusion/capture processes along the island edges. It was found that the substrate steps limit adatom diffusion and provide heterogeneous nucleation sites, resulting in a higher density of islands on a vicinal surface. As the islands can be several layers thick at their thinnest end, we propose that adatoms entering the islands undertake a so-called “vertical climb” along the sides of the island. This is facilitated by the presence of mismatch-induced dislocations that thread to the sides of the islands and produce local maxima of compressive strain. Dislocation lines also trigger initial nucleation on the surface with 2-3 ML Fe coverage. The sides of the nanowedge islands typically form along low-index crystallographic directions but can also form along dislocation lines or the substrate miscut direction.  相似文献   

2.
The growth of submonolayer Pt on Ru(0 0 0 1) has been studied with scanning tunneling microscopy. We focus on the island evolution depending on Pt coverage θPt, growth temperature TG and post-growth annealing temperature TA. Dendritic trigonal Pt islands with atomically rough borders are observed at room temperature and moderate deposition rates of about 5 × 10−4 ML/s. Two types of orientation, rotated by 180° and strongly influenced by minute amounts of oxygen are observed which is ascribed to nucleation starting at either hcp or fcc hollow sites. The preference for fcc sites changes to hcp in the presence of about one percent of oxygen. At lower growth temperatures Pt islands show a more fractal shape. Generally, atomically rough island borders smooth down at elevated growth temperatures higher than 300 K, or equivalent annealing temperatures. Dendritic Pt islands, for example, transform into compact, almost hexagonal islands, indicating similar step energies of A- and B-type of steps. Depending on the Pt coverage the thermal evolution differs somewhat: While regular islands on Ru(0 0 0 1) are formed at low coverages, vacancy islands are observed close to completion of the Pt layer.  相似文献   

3.
The oxidation of the W(1 0 0) surface at elevated temperatures has been studied using room temperature STM and LEED. High exposure of the clean surface to O2 at 1500 K followed by flash-annealing to 2300 K in UHV results in the formation of a novel p(3 × 1) reconstruction, which is imaged by STM as a missing-row structure on the surface. Upon further annealing in UHV, this surface develops a floreted LEED pattern characteristic of twinned microdomains of monoclinic WOx, while maintaining the p(3 × 1) missing-row structure. Atomically resolved STM images of this surface show a complex domain structure with single and double W〈0 1 0〉 rows coexisting on the surface in different domains.  相似文献   

4.
Atomic oxygen resulting from the dissociation of O2 on Pd(1 1 1) at low coverage was studied in a variable temperature scanning tunneling microscope (STM) in the range from 30 to 210 K. Oxygen atoms, which typically appear as 30-40 pm deep depressions on Pd(1 1 1), occupy fcc hollow sites and form ordered p(2 × 2) islands upon annealing above 180 K. The mobility of the atoms diminishes rapidly below 180 K, with an approximate diffusion barrier of 0.4-0.5 eV. Oxygen atom pairs produced by thermal dissociation of O2 at 160 K occupy both fcc and hcp hollow sites. The atoms travel approximately 0.25 nm after dissociation, and the distribution of pairs is strongly influenced by the presence of subsurface impurities within the Pd sample. At much lower temperatures, the STM tip can dissociate oxygen molecules. Dissociation occurs at sample bias voltages exceeding approximately 0.1 V. Following tip-induced dissociation, the product atoms occupy only fcc hollow sites. Oxygen atoms can be manipulated via short range repulsive interactions with the STM tip.  相似文献   

5.
We report on the growth of ultrathin epitaxial Co films on Fe(1 1 0) examined by scanning tunneling microscopy and spectroscopy (STM and STS). At room temperature Co forms pseudomorphic, ideally ordered body-centered cubic (bcc) layers for the first two monolayers as confirmed by atomically resolved STM images. This is in contrast to the related case of Co/Cr(1 1 0) where a superstructure occurs in the second layer. The third monolayer forms a close-packed structure and causes a transformation of the buried second monolayer into a close-packed structure. The Fe(1 1 0) substrate strongly influences the electronic structure of the first Co monolayer as concluded from the dI/dU spectra. This influence is less important for the second monolayer. The measured local density-of-states function for the bcc Co double layer is in agreement with theoretical predictions for bcc Co.  相似文献   

6.
The Mo(1 1 2) and Mo(1 1 1) surfaces have been studied by STM and DFT/GGA modeling. Due to high quality and cleanness of the surfaces, for the first time good STM images of large fragments of the Mo(1 1 2) and Mo(1 1 1) have been obtained. Lack of atomic resolution in the rows of the Mo(1 1 2) surface is attributed to flatness of distribution of density of the electronic states along the rows. This suggestion is illustrated by comparison of STM images for Mo(1 1 1) and Mo(1 1 2) and model calculations of STM pictures for these surfaces.  相似文献   

7.
The morphology of ceria films grown on a Ru(0 0 0 1) substrate was studied by scanning tunneling microscopy in combination with low-energy electron diffraction and Auger electron spectroscopy. The preparation conditions were determined for the growth of nm-thick, well-ordered CeO2(1 1 1) films covering the entire surface. The recipe has been adopted from the one suggested by Mullins et al. [D.R. Mullins, P.V. Radulovic, S.H. Overbury, Surf. Sci. 429 (1999) 186] and modified in that significantly higher oxidation temperatures are required to form atomically flat terraces, up to 500 Å in width, with a low density of the point defects assigned to oxygen vacancies. The terraces often consist of several rotational domains. A circular shape of terraces suggest a large variety of undercoordinated sites at the step edges which preferentially nucleate gold particles deposited onto these films. The results show that reactivity studies over ceria and metal/ceria surfaces should be complemented with STM studies, which provide direct information on the film morphology and surface defects, which are usually considered as active sites for catalysis over ceria.  相似文献   

8.
We have studied the influence of oxygen pressure during the cyclic annealing used for the cleaning of W(1 1 0) surfaces. For this purpose the surface morphology and electronic properties are measured by means of scanning tunneling microscopy (STM) and spectroscopy (STS), respectively. It is found that the surfaces with impurity atom densities as low as 2 × 10−3 can be obtained by gradually reducing the oxygen pressure between subsequent annealing cycles down to about 2 × 10−8 mbar in the final cycle. Only on the clean surface a bias-dependent spatial modulation of the local density of states (LDOS) is observed at step edges and around impurity sites by STS. In addition, we find a pronounced peak in the occupied states. In combination with density functional theory calculations these features can be traced back to a dispersive pz-dxz-type surface resonance band and the lower band edge of a surface state, respectively.  相似文献   

9.
The oxygen induced surface structures formed on Mo(1 1 0) by oxygen exposure at 1300 K in UHV has been studied by scanning tunneling microscopy (STM). Two kinds of oxygen-adsorbed surface structures are observed. One consists of one-dimensional rows running along or directions at substrate molybdenum lattices, and another shows more complex structure including discrete arrangement of large protrusions and zig-zag alignments of small protrusions. This complex structure is probably a further oxygen-adsorbed structure than the well-known p(2 × 2) structure of 0.3 ML coverage. On the basis of STM image, an atomic model is proposed, where adsorbed oxygen atoms occupy both long-bridge and the quasi-threefold sites of molybdenum lattice (0.4 ML coverage). This structure is presumed to be a transient state during site-conversion with increase of oxygen exposure.  相似文献   

10.
Electrodeposition is used to produce epitaxial single-crystal films on Au(1 1 1) substrates without annealing or other post-deposition modification. X-ray techniques show that the Bi(0 1 2) plane is parallel to the underlying Au(1 1 1) surface, and the azimuthal orientation of the films is determined. Combination of the X-ray data with in situ scanning tunneling microscopy (STM) images suggests a common growth mode from the first few layers up to thick films.  相似文献   

11.
We have investigated surface structures formed by deposition of 0.2 and 0.5-ML Ge on Pt(1 0 0) by using scanning tunneling microscopy (STM) and low electron energy diffraction (LEED). In addition, their temperature dependence and reactivity to CO have been studied. We observed the formation of disordered domains for Ge adatom coverages below 0.25-ML and complete c(2 × 2) structures at 0.25 to 0.5-ML Ge after annealing at 600-1200 K. Deposition of 0.2-ML Ge on a clean, hexagonally reconstructed (5 × 20)-Pt(1 0 0) substrate at 400 K lifts the reconstruction and ejects excess Pt atoms from the first layer into the adlayer. After annealing this surface to 600 K, the deposited Ge formed Ge adatoms on flat terraces and on round Pt adislands with incomplete c(2 × 2) structures, in addition to the presence of clean (1 × 1)-Pt(1 0 0) domains that were several nanometers across. Some domains of the unreconstructed (5 × 20)-Pt(1 0 0) surface still remained. After the deposition of 0.5-ML Ge and annealing at 600 K, disordered Ge domains disappeared and a c(2 × 2) Ge overlayer was produced all over the surface. Square terraces with square domains of the clean (1 × 1)-Pt(1 0 0) surface extended for nanometers. Annealing this surface to 900 K produced disordered Ge domains, and this was associated with an increase in Ge vacancies. When surfaces with 0.2-ML Ge were heated to 900 or 1200 K, or when a surface with 0.5-ML Ge was heated to 1200 K, larger domains of (5 × 20)-Pt(1 0 0) were formed with the agglomeration of disordered Ge adatoms. Pt clusters were observed in the Ge domains, and we consider these to be composed of those excess Pt atoms formed by lifting the reconstruction of the (5 × 20)-Pt(1 0 0) surface upon Ge agglomeration during cooling. A paper published elsewhere [T. Matsumoto, C. Ho, M. Batzill, B.E. Koel, Physical Review B, submitted for publication.] describes Na+-ion scattering spectroscopy (Na+-ISS) and X-ray photoelectron diffraction (XPD) experiments that distinguish between Ge present in an overlayer from incorporation into the top Pt layer to form a surface alloy for the surface structures reported here. Furthermore, these investigations revealed that disordered Ge adatoms observed herein might be associated with incomplete c(2 × 2) structures. Therefore, our observations of the formation of complete and incomplete domains of c(2 × 2) Ge adatoms indicate that interactions between Ge adatoms are repulsive at nearest neighbor distances and attractive at second-nearest neighbor distances. Regarding the reactivity of these surfaces, CO does not chemisorb on a Pt(1 0 0) surface with a c(2 × 2)-Ge overlayer and no measurable CO uptake was observed under UHV conditions at 220 K.  相似文献   

12.
The very first stages of the growth of NiO on Cu(1 1 1) is examined on a microscopic scale. The paper focuses on the morphological and structural characterization of nanostructures formed in the 0-1 Å thickness range. Ultra-thin NiO films, obtained through evaporation of a Ni rod under an oxygen atmosphere were grown at 550 K. In the early stages of the growth the oxide film morphology shows 10-30 nm large, monolayer high, islands with a partial incorporation of metallic Ni in the first Cu(1 1 1) surface plane. The first layer is formed by an epitaxial atomic layer exhibiting a STM contrast similar to the one observed on adsorbed oxygen on Cu(1 1 0). A NiO cluster nucleation and coalescence mechanism is proposed in order to explain the formation of the second NiO layer. A α-Ni2O3 hexagonal phase, or a structural distortion of the NiO(1 1 1)()R30° structure could both explain the complex LEED patterns.  相似文献   

13.
We studied the growth mode and electronic properties of ultra-thin silver films deposited on Ni(1 1 1) surface by means of scanning tunnelling microscopy (STM) and angle resolved photoemission spectroscopy (ARPES). The formation of the 4d-quantum well states (QWS) was analysed within the phase accumulation model (PAM). The electronic structure of the 1 ML film is consistent with the silver layer which very weakly interacts with the supporting surface. The line-shape analysis of Ag-4dxz,yz QWS spectrum support the notion of strong localization of these states within the silver layer. The asymmetry of the photoemission peaks implies that the decay of the photo-hole appears to be influenced by the dynamics of the electrons in the supporting surface.  相似文献   

14.
A series of thin Ni films, with thicknesses between 0.2 ML to 13 ML, were deposited on a Pd(1 0 0) substrate (a = 3.89 Å) at room temperature (RT). The growth morphology was investigated using scanning tunneling microscopy (STM). STM images indicate the existence of three different growth modes as a function of increasing coverage. Up to 6.5 ML, the films grow pseudomorphically, consistent with a face-centered tetragonal (fct) structure. From 6.5 ML to 10.5 ML a new apparent interlayer distance of 1.0 ± 0.1 Å is established. The new structure is accompanied by the appearance of an arrangement of filaments on the top layer surface. These filaments are presumably related to a strain relief mechanism of the fct films. Finally above 10.5 ML the Ni films recover the face-centered cubic (fcc) lattice constants. The filaments evolve, as a function of coverage, to form a net-like structure over the whole surface.  相似文献   

15.
We have used the Bi(0 0 0 1)/Si(1 1 1) template to grow highly ordered C60 epitaxial thin films and analyzed them using scanning tunneling microscopy and low-energy electron microscopy. The in situ low-energy electron microscope investigations show that the initial nucleation of the C60 islands on the surface takes place at surface defects, such as domain boundaries and multiple steps. The in-plane lattice parameters of this C60 film turns out to be the same as that of the bulk fcc(1 1 1) C60. The line-on-line epitaxial structure is realized in spite of a weak interaction between the C60 molecules and Bi(0 0 0 1) surface, while scanning tunneling spectroscopy indicates that there is a negligible charge transfer between the molecules and the surface.  相似文献   

16.
D.B. Dańko 《Surface science》2006,600(11):2258-2267
The influence of temperature on the growth process of ultra-thin Ag and Au layers on the Mo(1 1 1) surface was investigated. At 300 K growth of the Stranski-Krastanov type was found for Ag; for Au growth of the monolayer plus simultaneous multilayers type was found, where a base layer is one physical layer. The first three geometrical adsorbed layers for Ag are thermally stable. For annealed Au layers triangle features with base side length from 15 to 35 Å were formed for θ < 6 monolayer (ML), and for θ > 6 ML part of the Au formed a flat adlayer with Au atoms grouped in equilateral triangles with side length 7 Å. The presence of Au layers does not cause faceting, layers are not smooth which could be caused by the fact that Au does not wets the substrate. For Ag thick layers reversible wetting/non-wetting transition was observed at 600 K. Ag layers on Mo(1 1 1) surface did not lead to faceting.  相似文献   

17.
S.Yu. Bulavenko 《Surface science》2006,600(5):1185-1192
The STM technique with a special Bi/W tip was used to study the interaction of hydrogen atoms with the Si(1 1 1)-7 × 7 surface. The reactivity of different room temperature (RT) adsorption sites, such as adatoms (A), rest atoms (R), and corner holes (CH) was investigated. The reactivity of CH sites was found to be ∼2 times less than that of R and A sites. At temperatures higher than RT, hydrogen atoms rearrange among A, R, and CH sites, with increased occupation of R sites (T <  300 °C). Further temperature increase leads to hydrogen desorption, where its surface diffusion plays an active role. We discuss one of the possible desorption mechanisms, with the corner holes surrounded by a high potential barrier. Hydrogen atoms have a higher probability to overcome the desorption barrier rather than diffuse either into or out of the corner hole. The desorption temperature of hydrogen from CH, R, and A sites is about the same, equal to ∼500 °C. Also it is shown that hydrogen adsorption on the CH site causes slight electric charge redistribution over neighbouring adatoms, namely, increases the occupation of electronic states on A sites in the unfaulted halves of the Si(1 1 1)-7 × 7 unit cell. Based on these findings, the indirect method of investigation with conventional W tips was suggested for adsorbate interaction with CH sites.  相似文献   

18.
V. Palermo  A. Parisini 《Surface science》2006,600(5):1140-1146
SiC nanocrystals are grown at high temperature on Si(1 0 0) and Si(1 1 1) surfaces starting from a chemisorbed layer of methanol. The decomposition of this layer allows to have a well defined amount of carbon to feed SiC growth. Nanocrystals ranging from 10 nm to 50 nm with density from 100 μm−2 to 1500 μm−2 are obtained, and the total volume of produced SiC corresponds to carbon provided by the chemisorbed organic layer. Large differences in nanocrystal size and density, as well as in surface roughness, are observed depending on substrate orientation. The internal structure, crystallinity and epitaxy of nanocrystals grown on Si(1 0 0) are studied using cross-sectional transmission electron microscopy (XTEM), methanol adsorption and surface evolution using scanning tunnelling microscopy (STM). The joint application of XTEM and STM techniques allows a complete characterization of the geometry and chemical composition of these nanostructures.  相似文献   

19.
Tunneling electrons in a scanning tunneling microscope were used to excite specific vibrational quantum states of adsorbed water and hydroxyl molecules on a Ru(0 0 0 1) surface. The excited molecules relaxed by transfer of energy to lower energy modes, resulting in diffusion, dissociation, desorption, and surface-tip transfer processes. Diffusion of H2O molecules could be induced by excitation of the O-H stretch vibration mode at 445 meV. Isolated molecules required excitation of one single quantum while molecules bonded to a C atom required at least two quanta. Dissociation of single H2O molecules into H and OH required electron energies of 1 eV or higher while dissociation of OH required at least 2 eV electrons. In contrast, water molecules forming part of a cluster could be dissociated with electron energies of 0.5 eV.  相似文献   

20.
Formation of the platinum silicides nanostructures and their electronic properties have been studied using scanning tunneling microscopy and scanning tunneling spectroscopy. The investigated structures have been grown by solid state epitaxy upon deposition of the Si atoms (coverage about 0.2 ML) and sequential annealing at temperature range 600-1170 K. The formation of the Pt2Si and PtSi islands was investigated until the Si atoms embedded into the Pt substrate at the 1170 K. The images of the silicides structures and Pt substrates with atomic resolution have been recorded. The evolution of the spectroscopic curves both for substrates and nanostructures, corresponding to the structural and sizes changes, have been shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号