共查询到20条相似文献,搜索用时 13 毫秒
1.
2.
The structures of five dicopper complexes of binucleating ligand HL-H (N,N,N',N'-tetrakis[(2-benzimidazolyl)methyl]-2-hydroxy-1,3-diaminopropane) with thiocyanate and some other counterions were investigated by the X-ray diffraction method. In Cu(2)(HL-H)(NCS)(2)Cl(2).6H(2)O.CH(3)OH, 1 (a = 12.524(5) ?, b = 14.429(4) ?, c = 16.343(3) ?, alpha = 109.01(2) degrees, beta = 92.62(2) degrees, gamma = 115.27(3) degrees, Z = 2, triclinic, P&onemacr;), one chloride is not coordinated. Distorted square pyramidal (SP) geometry is found for both CuN(3)ClN and CuN(3)ON coordination sites in which the N(3) tripodal coordination sites come from the two symmetric halves of HL-H and the other nitrogen atoms come from thiocyanate ions. In Cu(2)(HL-H)(NCS)(2)(ClO(4))(2).6H(2)O.2EtOH, 2 (a = 10.955(2) ?, b = 15.366(5) ?, c = 18.465(9) ?, alpha = 65.57(4) degrees, beta = 89.73(3) degrees, gamma = 79.81(2) degrees, Z = 2, triclinic, P&onemacr;), the coordination environments for the two copper ions are both CuN(3)ON. However, their geometries are different: one is distorted SP and the other is distorted trigonal bipyramid (TBP). In Cu(2)(HL-H)(NCS)(2)(ClO(4))(2)Cl.H(3)O.3.5H(2)O, 3 (a = 11.986(6) ?, b = 12.778(5) ?, c = 17.81(1) ?, alpha = 82.41(4) degrees, beta = 75.44(5) degrees, gamma = 78.46(4) degrees, Z = 2, triclinic, P&onemacr;), the chloride ion does not coordinate to copper ion, but it is hydrogen bonded to the hydroxy hydrogen. The coordination environments for the two copper ions are both CuN(3)ON with distorted SP geometries. In Cu(2)(HL-H)(NCS)Cl(3).6H(2)O, 4 (a = 12.026(5) ?, b = 14.369(6) ?, c = 16.430(6) ?, alpha = 111.64(3) degrees, beta = 90.51(4) degrees, gamma = 113.90(3) degrees, Z = 2, triclinic, P&onemacr;), one chloride does not coordinate. The coordination environments for the two copper ions are CuN(3)ON in severely distorted TBP geometry and CuN(3)Cl(2) in SP geometry. In Cu(2)(HL-H)(NCS)(3)OH.2H(2)O.3CH(3)OH.Et(2)O, 5 (a = 18.322(5) ?, b = 15.543(6) ?, c = 19.428(7) ?, beta = 102.78(3) degrees, Z = 4, monoclinic, P2(1)/c), the hydroxide ion does not coordinate. The coordination environments for the two copper ions are CuN(3)N(2) with a geometry inbetween SP and TBP but slightly closer to SP and CuN(3)ON in distorted SP geometry. The distances between the copper ions are in the range 4.45-7.99 ?, indicating negligible interaction between the copper ions. The hydroxy groups of HL-H in 1-5all coordinate to copper ions either in a terminal mode (in complexes 1, 4, and 5, denoted as OHR(t)) or in a bridging mode (in complexes 2 and 3, denoted as OHR(b)). These hydroxy groups do not lose their protons in all cases. All thiocyanate anions coordinate to copper ions through nitrogen atoms. All copper ions in 1-5 are pentacoordinated. The fact that the CuN(3) geometries of the tripodal coordination sites in HL-H do not allow the formation of a square planar complex, may be the driving force for the formation of pentacoordinated complexes. From the structurally known dicopper complexes of the HL-H type ligands, the relative coordinating abilities of ligands to CuN(3) are OHR(t) > NCS(-) > Cl(-)(t) > OHR(b) approximately Cl(-)(b), where the letters b and t in parentheses denote bridging and terminal coordination modes respectively. 相似文献
3.
4.
5.
6.
Orhan Atakol Hasan Nazir Zehra Durmus Ingrid Svoboda Hartmut Fuess 《Analytical sciences》2002,18(4):493-494
7.
8.
9.
The stability constants of mononuclear (1:1) and binuclear (2:1) chelates of the Ag-HDPTA and Hg(II)-HDPTA systems (HDPTA = 2-hydroxy-1,3-diaminopropane-N,N,N',N'-tetra-acetic acid) were evaluated from pM and pH data, using a method proposed earlier by Ringbom and the author. The determinations yielded the following stability constants (concentration): The use of the reagent for the analytical determination of silver and mercury(II) ions is also discussed. 相似文献
10.
Poly(1,3[2-methoxy-4-hydroxy-5-acetylphenylene]butylene) was prepared by Friedel-Craft polycondensation of 2-hydroxy, 4-methoxyacetophenone
and 1,4-butane-diol in presence of poiyphosphoric acid catalyst. The polymer samples were characterized by IR spectra, TGA
and their Mn determined by nonaqueous titration. Viscosity measurents in DMSO showed that solutions exhibited normal behaviour.
Polymers were complexed with Cu(II), Ni(II), Mn(II), Co(II) and Zn(II) and characterized. Chelation and ion exchange properties
were also studied by employing the batch equilibrium method. 相似文献
11.
Aminou Mohamadou Gerard A. van Albada Ilpo Mutikainen Urho Turpeinen Jrme Marrot Jan Reedijk 《Polyhedron》2009,28(14):2813-2820
Six mononuclear complexes are reported with the tetradentate ligand N,N′-bis(2-pyridylmethyl)-1,3-propanediamine, (abbreviated as pypn) i.e. [Cu(pypn)(ClO4)2](H2O)1/2 (1), [Fe(pypn)Cl2](NO3) (2), [Zn(pypn)Cl](ClO4) (3), [Co(pypn)(NCS)2](ClO4) (4), [Co(pypn)(N3)2](ClO4) (5), [Zn(pypn)(NCS)2] (6). The synthesis and X-ray crystal structures of all six compounds and their spectroscopic properties are presented.The geometry of the Cu2+, Co3+, Zn2+, Fe3+ ions is essentially octahedrally based, with the mm conformation (for Cu) and msf conformations for the other 3 metal ions; in compound 3 the geometry around the Zn2+ is distorted trigonal bipyramidal. The stabilisation of the crystal lattices is maintained by interesting, relative strong hydrogen bonds. 相似文献
12.
13.
14.
15.
16.
17.
《Analytical letters》2012,45(11):577-586
Abstract Thermodynamic parameters have been determined by poten-tiometric techniques for complex ions formed by N,N,N',N'-tetrakis(2-hydroxyethyl)ethylenediamine TKED, with nickel (II), copper(II), and zinc(II) ions. The formation constants, enthalpy, and free energy data for the complexes exhibited values qualitatively consistent with predicted ligand field stabilization trends for these cations. The general expected stability of the complexes in the order Ni(II) < Cu(II) > Zn(II) is observed. 相似文献
18.
19.