共查询到19条相似文献,搜索用时 46 毫秒
1.
2.
磁场对Schiff碱配合物模拟甲烷单加氧酶催化性能的影响 总被引:1,自引:0,他引:1
生命体中存在许多双金属酶 ,其结构和作用机制目前尚不清楚 ,为了模拟甲烷单加氧酶的催化作用 ,我们将催化活性较高的金属卟啉、稳定性较高的 Schiff碱及双核结构结合起来 ,设计合成了一系列“类卟啉型”Schiff碱双核配合物 ,并将这些双核配合物模拟酶催化亚碘酰苯 (Ph IO)单加氧化环己烷反应 ,发现其催化活性及抗氧化稳定性类似于四芳基金属卟啉 [1~ 3 ] ;还发现在模拟酶催化环己烷氧化反应中双核配合物中的两个金属离子间存在协同作用 [4 ] .外加磁场对一般热化学反应影响较小 [5~ 7] ,而在催化反应中的磁场效应更明显 [5,8] .为了较… 相似文献
3.
4.
存在于生命体中的甲烷单加氧酶是一种双金属单加氧酶,其结构及催化作用机制目前还不十分清楚.为了模拟甲烷单加氧酶的催化作用,探讨甲烷单加氧酶中两个金属离子间是否存在协同作用,本文按前文方法合成了双[N,N’-亚乙基-2,2’-(苯亚甲基)二(3,4-二甲基吡咯-5-醛缩亚胺)]合单金属配合物MH2L(1~7)及双金属配合物MnML(8-14)(结构见Scheme 1). 相似文献
5.
制备了两种新的甲烷单加氧酶模拟酶:(1)固载于分子筛上的单氧桥联双核铁配合物Fe2(O)(H2O)2-(phen)4(ClO4);(2)在表面修饰的介孔分子筛上原位合成的氧桥、羧基桥联双核铁配合物Fe2(O)(μ-CH3COO)2-(H2O)2-(phen)2Cl2。利用紫外漫反射、红外漫反射、拉曼光谱、N2吸脱附分析及元素分析等手段,对模拟酶进行结构分析。结果表明,Fe2(O)(H2O)2-(phen)4(ClO)4主要是以配合物中的桥氧与分子筛表面硅羧基成氢键固载;原位合成的Fe2(O)(μ-CH3COO)2(H2O)2-(phen)2Cl2中,一个羟基来自表面修饰的分子筛,催化反应结果表明在,温和条件下、以叔丁基过氧化氢为氧化剂,这两种模拟酶均催化环已烷氧化。 相似文献
6.
7.
甲烷生物催化氧化制甲醇—甲基球菌3021中甲烷单加氧酶催化性能的研究 总被引:4,自引:0,他引:4
甲基球菌3021中的甲烷单加氧酶在甲烷生物催化氧化制甲醇的反应中具有重要的作用。实验结果表明,3021菌的热稳定性好于其它甲烷氧化细菌可在45℃反应5h。在200mmol/L磷酸缓冲液中,它的甲醇累积速率比甲基弯菌IMV3011高。乙二胺四乙酸,甲酸钠,NaCl可明显增加甲醇累积量。 相似文献
8.
9.
10.
合成和表征了4种酚氧桥联双L-苯丙氨酸双西佛碱的(VO)_2,Cr_2,Mn_2,Fe_2手性配合物,并以PhIO为单氧原子源,研究了它们作为甲烷单加氧酶(MMO)的模型化合物催化苯乙烯不对称环氧化反应的活性,结果表明,Mn_2配合物模型体系催化苯乙烯环氧化反应得到R-(+)-环氧苯乙烷 (ee42.8%),而同一配体的(VO)_2配合物却得到相反的结果:S-(-)-环氧苯乙烷(ee19.2%).EPR研究表明Mn_2,Cr_2,Fe_2配合物在催化过程中以M=O为活性中间体,而(VO)_2配合物以O=V-OIPh为活性中间体.催化活性大小顺序为Mn_2>Cr_2>(VO)_2>Fe_2. 相似文献
11.
利用含有甲烷单加氧酶(MMO)的甲基单胞菌Methylomonassp.GYJ3整细胞催化丙烯环氧化制取环氧丙烷时,辅酶NADH的消耗和产物抑制是反应难以连续进行的主要原因.为解决这些问题,通过批式反应考察了丙烯-甲烷共氧化反应合成环氧丙烷的可能性,发现反应气体中甲烷含量为30%时环氧丙烷的产量较高.在搅拌式生物反应器中,通过最佳配比的混合反应气体的连续循环将产物环氧丙烷抽提出来,从而克服了产物抑制.该生物反应器最初的环氧丙烷日产量为268μmol,连续操作12d后,MMO仍保留96%的初始活性. 相似文献
12.
13.
甲基单胞菌GYJ3催化环氧丙烷的半连续合成 总被引:3,自引:0,他引:3
利用含有甲烷单加氢酶(MMO)的甲烷氧化细菌整催化丙烷环氧化制取环氧丙烷,其产物抑制和辅酶NADH消耗是反应难以连续进行的主要原因,采用甲烷再生NADH,研究了丙烯和甲烷共氧化和氧物氧丙烷积累对甲基单胞菌GYJ3的环氧化活性的影响,并考察了在具有产物连续收系统的两段式生物反应器中用细菌胞悬浮液半连续生产环氧丙烷的可行性,将再生和环氧化过程分开进行,以减小甲烷和丙烯的竞争抑制,通过连续抽提产物环氧丙烷,克服了产物抑制,该半连续过程分别在不同的温度下共进行了70h,产生环氧丙烷438μmol。 相似文献
14.
15.
The partial oxidation of methane to formaldehyde was studied over different silica-supported metal oxide catalysts. The results show thatMoO3/SiO2 is the most selective catalyst among those studied, P2O5 exhibit a Promoting effect to the silica supported transition metal oxide catalysts for the formation of formaldehyde and a small amount of MoO3 can improve the selective properties of these catalysts. 相似文献
16.
17.
水蒸气存在时Mo/HZSM-5催化剂上的甲烷芳构化反应性能 总被引:2,自引:0,他引:2
研究了水蒸气存在条件下Mo/HZSM-5沸石分子筛催化剂上的甲烷芳构化反应行为,发现水蒸气的引入可以明显地降低甲烷芳构化反应的起始温度,从而在较为温和的条件下实现甲烷的活化.适量水蒸气的加入可以在一定程度上改善Mo/HZSM-5催化剂的稳定性,过量水蒸气的引入则会抑制甲烷芳构化反应.在反应温度为973 K时,引入适量的水蒸气对芳构化反应产物的分布没有明显影响在低温条件下的甲烷芳构化反应过程中检测到有乙烯生成,该结果支持了甲烷芳构化反应可能经历了乙烯这一中间产物的机理.实验结果还表明,水蒸气对催化剂上的积炭量没有明显的影响. 相似文献
18.
硅源及晶化时间对SAPO-5分子筛模板剂、酸性及催化性能的影响 总被引:9,自引:0,他引:9
改变硅源和晶化时间合成了系列SAPO5分子筛.用原位红外光谱和NH3TPD研究了不同样品的酸碱性,用TGDTA和MASNMR考察了硅源及晶化时间对分子筛模板剂的影响,评价了不同样品对正己烷裂解的催化活性.结果表明,SAPO5分子筛孔道不仅与模板剂的胺基有作用,而且与其甲基也有作用.以硅凝胶为硅源时,在48h内,延长晶化时间可使分子筛中硅含量和强酸中心数目增加,低温下正己烷裂解活性提高;晶化72h时,分子筛的酸性减弱,正己烷裂解活性降低.以正硅酸乙酯为硅源时,延长晶化时间可使SAPO5的酸性增强,正己烷裂解性能提高. 相似文献
19.
STUDY ON THE OXIDATIVE COUPLING OF METHANE III.CATALYTIC PERFORMANCE OF TiO2-BASED CATALYSTS STUDIED BY CO2-TPD AND TPR-TPO 下载免费PDF全文
The effects of surface acidity-basicity and surface oxidation reduction property of Li-La-Mn/TiO2 (I) and Li-La-Mn-W/TiO2 (II) catalysts on oxidative coupling of methane were studied by CO2-temperature programmed desorption (CO2-TPD) and temperature programmed reduction temperature programmed oxidation (TPR-TPO). The results show that there exist strong basic sites on catalysts I and II, but the quantity of these sites on catalyst II is more than that on catalyst I. Besides, the strength of basics site on catalyst II is stronger than that on catalyst I. The surface of catalyst II is easier to reduce and re-oxidize than that of catalyst I. The surface of catalyst II is easier to reduce and re-oxidize than of catalyst I, and the extent of reduction and reoxidation of catalyst II is more intensive than catalyst I, which results in a lowing of the reaction temperature and enhances the activity and C2 hydrocarbon yield as well as gas hourly space velocity(GHSV). Catalyst II is excellent for the oxidative coupling of methane (OCM). 相似文献