首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
J. Liang  S. Zhao  Z. Zhuo  T. Li  J. Zhao  M. Li  J. An  W. Wang  G. Du 《Laser Physics》2009,19(3):381-383
In the experiment, we have demonstrated the performance of a laser-diode, end-pumped, doubly Q-switched YVO4/Nd:YVO4 laser with both a BBO electric-optic (EO) Q-switch and Cr4+:YAG saturable absorber. At a maximum incident pump power of 15 W and an EO Q-switch repetition rate of 8 kHz, the stable laser pulses with the pulse duration 5.28 ns, the single pulse energy 0.14 mJ, and the pulse peak power 26 kW are obtained. The experimental results show that the double Q-switched laser with EO and Cr4+:YAG can generate the shorter pulse and the higher peak power in comparison to singly Q-switched laser with EO.  相似文献   

2.
A Nd:YVO4 laser was locked with a chirped volume Bragg grating to achieve single-longitudinal-mode output. Tuning was performed from 1,063 to 1,065?nm by translating the grating and a maximum output power of 4?W was obtained. With a Cr4+:YAG saturable absorber, Q-switched pulses with 4?ns and a pulse energy of 5.7???J were achieved which could be frequency doubled in PPKTP with a conversion efficiency exceeding 50?%.  相似文献   

3.
We demonstrated an efficient and compact, diode-pumped passively Q-switched Nd:YVO4 laser operation at 1.064 μm wavelength with high repetition rate, using Cr4+:YAG as saturable absorber, formed with a simple flat–flat resonator. The maximum CW output power of 4.05 W was obtained at the incident pump power of 8 W. For Q-switched operation, the maximum average output power was measured to be 1.4 W with the corresponding repetition rate of 200 kHz, the pulse width of 60 ns when the initial transmission of Cr4+:YAG crystal was 85%. The shortest pulse width of 12 ns, the largest pulse energy of 36 μJ and the highest peak power of 3 kW were obtained when the Cr4+:YAG crystal with an initial transmission of 60% was used.  相似文献   

4.
Passively Q-switched green output with Cr4+:YAG as saturable absorber and PPMgLN as the frequency doubling crystal was realized in a compact diode end-pumped Nd:YVO4 laser. The green light output power, pulse width, pulse repetition rate, pulse energy and peak power with three Cr4+:YAG of different initial transmissions were investigated. The maximum average output power was 1.2 W at the pump power of 4.0 W and the maximum conversion efficiency was 30% with the Cr4+:YAG of 90% initial transmission. The maximum pulse energy and minimum pulse width were 10.9 μJ and 12 ns with the Cr4+:YAG of 75% initial transmission.  相似文献   

5.
We report the efficient continuous-wave (CW) and Q-switched laser operation of a diode-pumped Yb:YVO4 laser. A CW output power of 1 W with a slope efficiency of 59% with respect to absorbed pump power was demonstrated. Passively Q-switched with a Cr4+:YAG saturable absorber, a Yb:YVO4 laser with Raman conversion was demonstrated. Q-switched 18.7- J pulses with a pulse duration of 17 ns and a peak power up to 1 kW were obtained at 1018-nm fundamental wavelength and 3.6- J pulses with a pulse duration of 6 ns and a peak power of about 0.6 kW were obtained at 1119.5-nm first-Stokes wavelength.This revised version was published online in March 2005. In the previous version, the published online date was missing  相似文献   

6.
We report on an efficient high-power passively Q-switched UV laser at 355 nm. We take into account the second threshold criterion and the thermal-lensing effect to design and realize a compact reliable passively Q-switched Nd:YVO4 laser with Cr4+:YAG as a saturable absorber. At an incident pump power of 16.3 W, the average output power at 1064 nm reaches 6.2 W with a pulse width of 7 ns and a pulse repetition rate of 56 kHz. Employing the developed passively Q-switched laser to perform the extra-cavity harmonic generations, the maximum average output powers at 532 nm and 355 nm are up to 2.2 W and 1.62 W, respectively.  相似文献   

7.
We report a high repetition rate Q-switched Nd:YVO4/Cr4+:YAG micro laser with small pump power. Unwanted defects in pulse train, which are inherently large in passively Q-switched laser, was simply minimized by controlling temperature of Nd:YVO4/Cr4+:YAG medium. When T 0 = 90% Cr4+:YAG and R OC = 90% output coupler were used, Q-switched Nd:YVO4/Cr4+:YAG micro laser showed the optimum output; maximum output power of 58 mW, optical-to-optical efficiency of 9.1%, repetition rate of 1.1 MHz, and pulse width of 57 ns were achieved with 640 mW pumping. MHz-order repetition rate in Nd:YVO4/Cr4+:YAG Q-switched laser with low pumping (<1 W) is the highest value to the best of our knowledge.  相似文献   

8.
A compact diode-pumped passively Q-switched intracavity frequency-doubled Nd:GdVO4/KTP green-pulse laser was demonstrated, using Cr4+:YAG as a saturable absorber in a simple flat–flat cavity. With a 5.9 W incident pump power, a passively Q-switched green laser was obtained with an average power of 397 mW, repetition rate of 40 kHz, and pulse width of 40 ns, when the initial transmission of Cr4+:YAG was 85%. The shortest pulse width of 30 ns, the highest green peak power of 696 W and the maximum pulse energy of 21 μJ were obtained when the initial transmission of Cr4+:YAG was 70%. Under CW green operation, we obtained 440 mW output power.  相似文献   

9.
We thoroughly develop compact high-peak-power Nd:YVO4/Cr4+:YAG passively Q-switched lasers (PQS) as the seed source of the fiber amplifier. We exploit a nearly hemispherical cavity to reach the second threshold criterion and systematically consider the thermal lensing effect and the mode-size matching in the overall optimization. Employing a Cr4+:YAG absorber with 70% initial transmission, we obtain a 50-kHz seed pulse train with the pulse duration of 4.8 ns and the pulse energy of 22 ??J at a pump power of 5.4 W. Injecting this seed laser into a polarization maintained Yb-doped fiber, the pulse energy and peak power at a pump power of 16 W are enhanced up to 178 ??J and 37 kW, respectively. We also use an absorber with 40% initial transmission to generate a 25 kHz pulse train with the pulse duration of 1.6 ns and the pulse energy of 36 ??J at a pump power of 5.4 W. With this seed laser, we find that the surface damage of the fiber limits the maximum pulse energy and peak power to be 192 ??J and 120 kW, respectively.  相似文献   

10.
We present a simple technique to improve the symmetry of pulse emitted by doubly passively Q-switched lasers. Using both Cr4+:YAG and GaAs saturable absorbers in the same cavity, a diode-pumped doubly passively Q-switched Nd:YVO4 laser is realized for the fist time. This laser can generate more symmetric pulse with shorter pulse width and higher peak power compared with the solely passively Q-switched laser with Cr4+:YAG saturable absorber or GaAs coupler. The pulse symmetry factor ε of such a doubly passively Q-switched laser is experimentally shown to reach 1.05. Simulations by a rate-equation model for doubly passively Q-switched laser are in close agreement with the experimental results.PACS 42.55.Xi; 42.55.Rz; 42.60.Gd  相似文献   

11.
We design an efficient passively Q-switched laser using a composite YAG/Yb:YAG crystal as the laser gain medium and a Cr4+:YAG crystal as a saturable absorber. We obtain an average output power of 1.81 W in 1030 nm laser at an absorbed pump power of 4.8 W, corresponding to an optical-to-optical efficiency of 37.7% and a slope efficiency of 47.3%. The pulsed laser has a repetition rate of about 28.6 kHz and a pulse width of 15.8 ns, with the highest peak power of 4 kW. In addition, using a LBO as the intracavity frequency doubler, we obtain a maximum power of 246 mW in 515 nm pulsed laser at an absorbed pump power of 3.8 W.  相似文献   

12.
The efficient cw mode locking (cw-ML) regime was demonstrated in Nd:YVO4 laser by means of saturable absorber mirror (SAM). The 0.3-at.% Nd3+ doped 10-mm-long YVO4 crystal end pumped by 20-W diode module with a beam shaper was applied as a gain medium located in the close vicinity to the rear flat mirror of the first arm of Z-type resonator of 316 cm total length with two curved mirrors of 100-cm curvature radii. The SAM of 2%-saturable absorptance and saturation fluence of 50 μJ/cm2 was mounted at the opposite end of a resonator. The developed “dynamically stable” cavity design mitigates detrimental role of thermal aberration in gain medium, enforcing clean perfect mode locking even for the highest pump densities. The cw-ML pulses with 47.5 MHz repetition rate and pulse durations in the range of 15–20 ps were observed for a wide range of pump powers and output coupler losses. In the best case, for 32% of output coupler transmission, up to 6.2 W of average power with near 35% slope efficiency was achieved. The thresholds for Q-switched ML, cw-ML regimes were 2.67 W and 6.13 W of pump power, respectively. For the maximum pump power of 20 W we obtained 133 nJ of pulse energy with 16-ps pulse duration, resulting in a peak power higher than 8 kW. The threshold energy density at SAM giving the QML regime was estimated to be about 30 μJ/cm2, threshold of cw-ML regime was 220 μJ/cm2.  相似文献   

13.
J. P. Shen  C. F. Ding 《Laser Physics》2012,22(11):1659-1663
A compact, diode-pumped passively Q-switched Nd3+:Gd3Ga5O12 (Nd:GGG) laser with Cr4+:YAG saturable absorber has been successfully demonstrated. Stable Q-switched pulses with pulse energy of 100 ??J and high peak power of 14 kW have been obtained. The pulse width was as short as 7 ns with low repetition rate of 10 kHz. The dependence of pulse width, pulse repetition rate, pulse energy and pulse peak power on pump power have been measured respectively. Experimental results reveal that the Nd:GGG crystal with Cr4+:YAG saturable absorber is suitable for narrow pulse width and high power passively Q-switched lasers.  相似文献   

14.
X. Yu  R. P. Yan  M. Luo  F. Chen  X. D. Li  J. H. Yu 《Laser Physics》2009,19(10):1960-1963
We demonstrated a diode-end-pumped continuous-wave 914 nm laser using a novel grown-together YVO4/Nd:YVO4 crystal for the first time. A maximum output power at 914 nm of 7.5 W with an optical-optical efficiency of 16.3% and a slope efficiency of 24.3% was obtained when the incident pump power was 46.2 W. The beam quality factor M 2 was 3.2 at the output power of 6.0 W. The quality and specification of the grown-together composite YVO4/Nd:YVO4 crystal should be improved. Meanwhile, energy-transfer upconversion spectrum of the composite YVO4/Nd:YVO4 crystal laser was also investigated.  相似文献   

15.
We report on laser-diode pumped low-threshold, and compact passively Q-switched Yb:YAG microchip lasers, with Cr4+:YAG crystals as the saturable absorbers. The laser threshold at the fundamental wavelength of 1.03 μm is as low as 0.25 W, and the slope efficiency is as high as 36.8%, and the optical-to-optical efficiency is as high as 27% for the 95% initial transmission of the Cr4+:YAG crystal. A pulse width of 1.35 ns and peak power of over 8.2 kW was obtained. Using a 5 mm thick KTP crystal as the second-harmonic generation medium, 514.7 nm green light of 155 mW power was generated. The pulse duration of 480 ps was generated at 1.03 μm by using 85% of the initial transmission of the Cr4+:YAG saturable absorber. Stable single-longitudinal-mode oscillation and wide-separated multi-longitudinal-mode oscillation due to the etalon effect of the Cr4+:YAG thin plate was achieved at different pump power levels. PACS 42.55.Sa; 42.55.Xi; 42.60.Gd  相似文献   

16.
We report two kinds of compact and efficient diode-end-pumped TEM00 lasers with output power >25 W at ≈50 W of incident pump power. One laser consists of a single 0.3 at. % Nd:YVO4 crystal in a V-type cavity, the other laser includes two 0.5 at. % Nd:YVO4 crystals in a linear cavity. Experimental results show that lowering Nd3+ concentration can be beneficial in extending the fracture-limited pump power but it also increases the sensitivity of the pump wavelength due to the overlapping efficiency. Received: 19 February 2000 / Revised version: 30 May 2000 / Published online: 20 September 2000  相似文献   

17.
A high power diode-end-pumped passively Q-switched and mode-locking (QML) Nd:GdVO4 laser at 912 nm was demonstrated for the first time, to the best of our knowledge. A Z-type laser cavity with Cr4+:YAG crystals as the intracavity saturable absorber were employed in the experiments. Influence of the initial transmission (TU) of the saturable absorber on the QML laser performance was investigated. Using the TU = 95% Cr4+:YAG, as much as an average output power of 2.0 W pulsed 912 nm laser was produced at an absorbed pump power of 25.0 W, then the repetition rates of the Q-switched envelope and the mode-locking pulse were ~ 224 kHz and ~ 160 MHz, respectively. Whereas the maximum output power was reduced to 1.3 W using the TU = 90% Cr4+:YAG, we obtained a 100% modulation depth for the mode-locking pulses inside the Q-switched envelope.  相似文献   

18.
Nd3+:NaY(WO4)2, known as Nd:NYW, is a new type crystal. By using laser-diode as pump source, a passive Q-switching of intracavity-frequency-doubling Nd:NYW/KTP laser has been realized with Cr4+:YAG saturable absorber. The dependence of pulse repetition rate, pulse energy, pulse width, and peak power on incident pump power for different small-signal transmissions of Cr4+:YAG are measured. The coupled rate equations are used to simulate the Q-switched process of laser, and the numerical solutions agree with the experimental results.  相似文献   

19.
The laser performance of a composite crystal bonded with three Nd:YVO4 single crystals has been investigated for the first time as far as we know. The largest continuous wave output power of 2.68 W is obtained at the incident pump power of 6.2 W, giving an optical conversion efficiency of 43.1% and a slope efficiency of 45.9%. For passively Q-switched operation with Cr4+:YAG of 71% initial transmission, the shortest pulse width of 18.2 ns, the largest single-pulse energy of 19.9 μJ, and the highest peak power of 1.12 kW are achieved, with the pulse repetition rate being 44.9 kHz, at the incident pump power of 6.2 W. The composite crystal can generate more excellent laser performance, when compared with the single crystals.  相似文献   

20.
This work presents experimental results concerning a passively Q-switched intracavity frequencydoubled Nd:LuVO4/LBO green laser with a Cr4+:YAG saturable absorber operated at the wavelength of 0.53 μm. A maximal output power of 1.28 W was obtained at a pump power of 16.34 W, and peak power, pulse width as well as repetition frequency were 1.48 kW, 41 ns and 21 kHz, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号