首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interactions of a new antitumor platinum (Pt) complex, (-)-(R)-2-aminomethylpyrrolidine(1,1-cyclobutanedicarboxylato++ +) platinum(II) monohydrate (DWA2114R, 2) and its related compounds, cis-diamminedichloroplatinum(II) (CDDP, 1), trans-diamminedichloroplatinum(II) (TDDP, 3), (+)-(S)-2-aminomethylpyrrolidine(1,1-cyclobutanedicarboxylato++ +) platinum(II) monohydrate (DWA2114S, 4), (R)-2-aminomethylpyrrolidinedichloroplatinum(II) (5) and cis-diammine(1,1-cyclobutanedicarboxylato)platinum(II) (CBDCA, 6), with calf-thymus deoxyribonucleic acid (DNA) and DNA nucleosides were investigated by ultraviolet (UV) and circular dichroism (CD) spectrometry. The UV spectra of the DNAs treated with these Pt complexes exhibited both bathochromic shift and hyperchromicity, showing a binding of Pt to the heterocyclic groups of these DNA as well as an alteration in the secondary structure of DNA. The reaction rates of the Pt complexes with DNA, however, differed from one another, and the order was CDDP, TDDP, 5 much greater than DWA2114R, S greater than CBDCA. The CD spectra of the DNAs treated with the Pt complexes, except TDDP, at a low Pt ratio (less than approximately (ca.) 0.1 of Pt bound to DNA/DNA base molar ratio) exhibited an increase of ellipticity at ca. 275 nm. The melting temperature of the DNAs treated with DWA2114R or CDDP were almost the same as the native DNA, while the melting temperature with TDDP was higher by 7-8 degrees C than that of the native DNA. All the Pt complexes reacted with 2'-deoxyguanosine (dG), 2'-deoxyadenosine and 2'-deoxycytidine, but none reacted with thymidine. The CD spectral change of the dG was largest. DWA2114R reacted faster with dG than other nucleosides.  相似文献   

2.
We reported earlier that expression of Sox-4 was found to be elevated during prostaglandin (PG) A(2) and delta(12)-PGJ(2) induced apoptosis in human hepatocarcinoma Hep3B cells. In this study, the role of Sox-4 was examined using human Hep3B and HepG2 cell lines. Sox-4 induction by several apoptotic inducer such as A23187 (Ca(2+) ionophore) and etoposide (topoisomerase II inhibitor) and Sox-4 transfection into the cells were able to induce apoptosis as observed by the cellular DNA fragmentation. Antisense oligonucleotide of Sox-4 inhibited the induction of Sox-4 expression and blocked the formation of DNA fragmentation by PGA(2) and delta(12)-PGJ(2) in Hep3B and HepG2 cells. Sox-4-induced apoptosis was accompanied with caspase-1 activation indicating that caspase cascade was involved in this apoptotic pathway. These results indicate that Sox-4 is involved in Hep3B and HepG2 cells apoptosis as an important apoptotic mediator.  相似文献   

3.
A series of mononuclear mixed ligand copper(II) complexes [Cu(bba)(diimine)](ClO(4))(2)1-4, where bba is N,N-bis(benzimidazol-2-ylmethyl)amine and diimine is 2,2'-bipyridine (bpy) (1), 1,10-phenanthroline (phen) (2), 5,6-dimethyl-1,10-phenanthroline (5,6-dmp) (3), or dipyrido[3,2-d:2',3'-f]quinoxaline (dpq) (4), have been isolated and characterized by analytical and spectral methods. The coordination geometry around copper(II) in 2 is described as square pyramidal with the two benzimidazole nitrogen atoms of the primary ligand bba and the two nitrogen atoms of phen (2) co-ligand constituting the equatorial plane and the amine nitrogen atom of bba occupying the apical position. In contrast, the two benzimidazole nitrogen atoms and the amine nitrogen atom of bba ligand and one of the two nitrogen atoms of 5,6-dmp constitute the equatorial plane of the trigonal bipyramidal distorted square based pyramidal (TBDSBP) coordination geometry of 3 with the other nitrogen atom of 5,6-dmp occupying the apical position. The structures of 1-4 have been optimized by using the density functional theory (DFT) method at the B3LYP/6-31G(d,p) level. Absorption spectral titrations with Calf Thymus (CT) DNA reveal that the intrinsic DNA binding affinity of the complexes depends upon the diimine co-ligand, dpq (4) > 5,6-dmp (3) > phen (2) > bpy (1). The DNA binding affinity of 4 is higher than 2 revealing that the π-stacking interaction of the dpq ring in between the DNA base pairs with the two bzim moieties of the bba ligand stacked along the DNA surface is more intimate than that of phen. The complex 3 is bound to DNA more strongly than 1 and 2 through strong hydrophobic interaction of the methyl groups on 5,6-positions of the phen ring in the DNA grooves. The extent of the decrease in relative emission intensities of DNA-bound ethidium bromide (EB) upon adding the complexes parallels the trend in DNA binding affinities. The large enhancement in relative viscosity of DNA upon binding to 3 and 4 supports the DNA binding modes proposed. Interestingly, the 5,6-dmp complex 3 is selective in exhibiting a positive induced CD band (ICD) upon binding to DNA suggesting that it induces a B to A conformational change. In contrast, 2 and 4 show induced CD responses indicating their involvement in strong DNA binding. Interestingly, only the dpq complex 4, which displays the strongest DNA binding affinity and is efficient in cleaving DNA in the absence of an activator with a rate constant of 5.8 ± 0.1 h(-1), which is higher than the uncatalyzed rate of DNA cleavage. All the complexes exhibit oxidative DNA cleavage ability, which varies as 4 > 2 > 3 > 1 (ascorbic acid) and 3 > 2 > 4 > 1 (H(2)O(2)). Also, the complexes cleave the protein bovine serum albumin in the presence of H(2)O(2) as an activator with the cleavage ability varying in the order 3 > 4 > 2 > 1. The highest efficiency of 3 to cleave both DNA and protein in the presence of H(2)O(2) is consistent with its strong hydrophobic interaction with the biopolymers. The IC(50) values of 1-4 against cervical cancer cell lines (SiHa) are almost equal to that of cisplatin, indicating that they have the potential to act as effective anticancer drugs in a time-dependent manner. The morphological assessment data obtained by using acridine orange/ethidium bromide (AO/EB) and Hoechst 33258 staining reveal that 3 induces apoptosis much more effectively than the other complexes. Also, the alkaline single-cell gel electrophoresis study (comet assay) suggests that the same complex induces DNA fragmentation more efficiently than others.  相似文献   

4.
《Analytical letters》2012,45(16):2439-2453
Abstract

A sensitive electrochemical biosensor was designed for determination of aflatoxin B1 (AFB1) using a copper-based metal-organic framework (Cu-MOF), which has strong electrochemical activity and exonuclease III (Exo III)-assisted recycling for dual signal amplification. Hairpin DNA (S1) was immobilized on the electrode. The AFB1 was recognized by aptamer DNA (S2) and complementary DNA (S3) was released. The S3 hybridized with the hairpin S1 to form the Exo III hydrolyzed double-stranded DNA, leaving a partial sequence of hairpin DNA (S1′) on the electrode and releasing S3 for the next cycle of the opening and digestion of hairpin S1. The amplified S1′ then was able to combine with more signal probes. Cu-MOF bond gold nanoparticles (AuNPs) by -NH2 were immobilized to capture DNA (S4) to obtain Cu-MOF/AuNPs/S4. This signal probe Cu-MOF/AuNPs/S4 was able to hybridize with the electrode and generate an amplified electrochemical signal. Under the optimized conditions, this electrochemical biosensor for AFB1 exhibited a low detection limit of 6.7?×?10?7?ng/mL at a signal-to-noise equal to 3 and a wide linear range from 10?6 to 1?ng/mL. The biosensor was also used to analyze AFB1-spiked beer sample with recovery values between 96% and 103%. This method has the potential to become a valuable technology for detecting various toxins by the selection of the appropriate aptamer DNA.  相似文献   

5.
This paper reports a novel detection method for DNA hybridization based on the electrochemiluminescence (ECL) of Ru(bpy)(3)(2+) with a DNA-binding intercalator as a reductant of Ru(bpy)(3)(3+). Some ECL-inducible intercalators have been screened in this study using electrochemical methods combined with a chemiluminescent technique. The double-stranded DNA intercalated by doxorubicin, daunorubicin, or 4',6-diamidino-2-phenylindole (DAPI) shows a good ECL with Ru(bpy)(3)(2+) at +1.19 V (versus Ag/AgCl), while the non-intercalated single-stranded DNA does not. In order to stabilize the self-assembled DNA molecules during ECL reaction, we constructed the ECL DNA biosensor separating the ECL working electrode with an immobilized DNA probe. A gold electrode array on a plastic plate was assembled with a thru-hole array where oligonucleotide probes were immobilized in the side wall of thru-hole array. The fabricated ECL DNA biosensor was used to detect several pathogens using ECL technique. A good specificity of single point mutations for hepatitis disease was obtained by using the DAPI-intercalated Ru(bpy)(3)(2+) ECL.  相似文献   

6.
Ma DL  Che CM  Siu FM  Yang M  Wong KY 《Inorganic chemistry》2007,46(3):740-749
[Ru(tBu2bpy)2(2-appt)](PF6)2 [1.(PF6)2, tBu2bpy = 4,4'-di-tert-butyl-2,2'-bipyridine, 2-appt = 2-amino-4-phenylamino-6-(2-pyridyl)-1,3,5-triazine] and [Re(CO)3(2-appt)Cl] (2) were prepared and characterized by X-ray crystal analysis. The binding of 1.(PF6)2 and 2 to calf thymus DNA (ct DNA) led to increases in the DNA melting temperature (Delta Tm = +12 degrees C), modest hypochromism (29% and 5% of the absorption bands at lambda max = 450 and 376 nm, respectively), and insignificant shifts in the absorption maxima. The binding constants of 1.(PF6)2 and 2 with ct DNA, as determined by absorption titration, are (8.9 +/- 0.5) x 104 and (3.6 +/- 0.1) x 104 dm3 mol-1, respectively. UV-vis absorption titration, DNA melting studies, and competition dialysis using synthetic oligonucleotides [poly(dA-dT)2 and poly(dG-dC)2] revealed that 1.(PF6)2 and 2 exhibit a binding preference for AT sequences. A modeling study on the interaction between 1 or 2 and B-DNA revealed that the minor groove is the most favored binding site and an extensive hydrogen-bonding network is formed. As determined by MTT assays, 1.(PF6)2 and 2 exhibited moderate cytotoxicities toward several human cancer cell lines (KB-3-1, HepG2, and HeLa), as well as a multi-drug-resistant cancer cell line (KB-V-1). According to confocal microscopic and flow cytometric studies, 1.(PF6)2 and 2 induced apoptosis (50-60%) in cancer cells with <5% necrosis detected.  相似文献   

7.
The ability of the DNA duplex to behave as an efficient organized medium for cis-trans isomerization induced by electron transfer (ET) has been explored. Isomerization studies, luminescence quenching and DNA photocleavage assays show that photoexcited Ru(1,10-phenanthroline [phen])3(2+) transfers an electron to E,Z1,4-bis[2-(1-methylpyridinium-4-yl)vinyl]benzene (E,Z pMPVB), which subsequently undergoes one-way isomerization to E,E pMPVB. The unusual feature of the system is manifested by the lack of friction that is usually imposed on the photoisomerizable ligand by highly organized media. The apparent rate of ET in DNA increases when compared with the homogeneous solution. However, after correction for the local concentration of the reagents onto the biopolymer, the rate constant becomes independent of the DNA concentration and is at least 4 x 10(2) times smaller than that in the homogeneous aqueous solution. Using the photoinduced isomerization system, a large enhancement in the efficiency of single-strand break formation was found in plasmid DNA over that for Ru(phen)3(+2) alone using irradiation at lambda > 480 nm.  相似文献   

8.
Chen J  Wang X  Shao Y  Zhu J  Zhu Y  Li Y  Xu Q  Guo Z 《Inorganic chemistry》2007,46(8):3306-3312
A highly water soluble 3:2 complex of copper(II) and 2,4,6-tris(di-2-pyridylamine)-1,3,5-triazine (TDAT) has been synthesized and structurally characterized. The complex crystallized in a triclinic P1 space group with a molecular formula of [Cu3(TDAT)2Cl3]Cl3.2H2O (1), where each copper ion is coordinated by four pyridine nitrogen atoms and an apical chloride. The trinuclear complex is stable at physiological relevant conditions. It can bind to DNA through electrostatic attraction and cleave efficiently the supercoiled pBR322 DNA into its nicked and linear forms at micromolar concentrations. Active oxygen intermediates such as hydroxyl radicals and singlet oxygen generated in the presence of 1 may act as active species for the DNA scission.  相似文献   

9.
A facile and automated procedure for the incorporation of a derivatized Ru(bpy)3(2+) in an oligodeoxynucleotide is reported. The Ru(bpy)3(2+)-thymidine phosphoramidite is synthesized, and then incorporated in DNA using a standard protocol on an automated DNA solid-phase synthesizer. The structure of the DNA duplex is not altered after labeling with Ru(bpy)3(2+). Photophysical studies of the novel ruthenium trisdiimine thymidine complex as well as the corresponding labeled oligodeoxynucleotides demonstrate that the favorable properties associated with the ruthenium complex are retained after covalent attachment to the nucleoside and oligodeoxynucleotide.  相似文献   

10.
The complexes rac-[Fe(diimine)(3)](ClO(4))(2)1-4, where diimine = 2,2'-bipyridine (bpy) 1, 1,10-phenanthroline (phen) 2, 5,6-dimethyl-1,10-phenanthroline (5,6-dmp) 3 and dipyrido[3,2-d:2',3'-f]quinoxaline (dpq) 4, have been isolated, characterized and their interaction with calf thymus DNA studied by using a host of physical methods. The X-ray crystal structure of rac-[Fe(5,6-dmp)(3)](ClO(4))(2)3 has been determined and the packing diagram shows the presence of two enantiomeric forms of the complex cations in the same unit cell. The structures of 1-4 in solution have also been studied using UV-Visible, Cyclic Voltammetry and ESI-MS data and all data available suggests that they retain their solid state structures even in solution. The absorption spectral titrations of the iron(ii) complexes with CT DNA reveal that the DNA binding affinities of the complexes vary in the order, 4 (K(b): 9.0 × 10(3)) > 2 (6.8 × 10(3)) > 3 (4. 8 × 10(3)) > 1 (2.9 × 10(3) M(-1)). The DNA interaction of dpq complex (4) involves partial insertion of the extended phen ring in between the DNA base pairs, which is deeper than that of phen (2). The 5,6-dmp (3) complex is involved in groove binding in the major groove of DNA. The lower DNA binding affinity of 1 is due to electrostatic interaction of the cationic complexes with exterior phosphates of DNA. The EthBr displacement assay and DNA viscosity study support these DNA binding modes and the above trend in DNA binding affinities. The complexes of 1 and 2 show induced CD (ICD) upon interaction with CT DNA while 3 and 4 bound to DNA exhibit inversion in the positive band with the helicity band showing very small changes, which implies that 3 and 4 bind enantiopreferentially to DNA. The DNA cleavage abilities of 1-4 have been observed at 10 μM concentration of complexes in the presence of 100 μM H(2)O(2) and the DNA cleavage efficiency (> 90%) follows the order 3 > 1 > 2 > 4. The anticancer activity of 1-4 against human breast cancer cell line (MCF-7) has also been studied. The IC(50) values of the complexes at different incubation time intervals of 24 and 48 h follow the order, 3 (0.8, 0.6) < 4 (20.0, 17.0) < 2 (28.0, 22.0) < 1 (32.0, 29.0 μM). Interestingly, 3 exhibits anticancer activity more potent than 1, 2 and 4 and cisplatin for both 24 and 48 h. It induces cell death both through apoptosis and necrosis mechanisms, as revealed by morphological assessment data obtained by using AO/EB and Hoechst 33258 fluorescence staining methods.  相似文献   

11.
Short DNA duplexes containing an N(4)C-ethyl-N(4)C interstrand cross-link, C-C, were synthesized on controlled pore glass supports. Duplexes having two, three, or four A/T base pairs on either side of the C-C cross-link and terminating with a C(4) overhang at their 5'-ends were prepared. The cross-link was introduced using a convertible nucleoside approach. Thus, an oligonucleotide terminating at its 5'-end with O(4)-triazoyl-2'-deoxyuridine was first prepared on the support. The triazole group of support-bound oligomer was displaced by the aminoethyl group of 5'-dimethoxytrityl-3'-O-tert-butyldimethylsilyl-N(4)-(2-aminoethyl)deoxycytidine to give the cross-link. The dimethoxytrityl group was removed, and the upper and lower strands of the duplex were extended from two 5'-hydroxyl groups of the cross-link using protected nucleoside 3'-phosphoramidites. The tert-butyldimethylsilyl group of the resulting partial duplex was then removed, and the chain was extended in the 3'-direction from the resulting 3'-hydroxyl of the cross-link using protected nucleoside 5'-phosphoramidites. The cross-linked duplexes were purified by HPLC and characterized by enzymatic digestion and MALDI-TOF mass spectrometry. Duplexes with three or four A/T base pairs on either side of the C-C cross-link gave sigmoidal shaped A(260) profiles when heated, a behavior consistent with cooperative denaturation of the A/T base pairs. Each cross-linked duplex could be ligated to an acceptor duplex using T4 DNA ligase, a result that suggests that the C-C cross-link does not interfere with the ligation reaction, even when it is located only two base pairs from the site of ligation. The ability to synthesize duplexes with a defined interstrand cross-link and to incorporate these duplexes into longer pieces of DNA should enable preparation of substrates that can be used for a variety of biophysical and biochemical experiments, including studies of DNA repair.  相似文献   

12.
Light-activation of metal ion complexes to cytotoxic species is of interest due to the potential use in anticancer therapy. Two platinum complexes, trans,trans,trans-[Pt(IV)(N(3))(2)(OH)(2)(NH(3))(2)] (3) and trans,trans,trans-[Pt(IV)(N(3))(2)(OH)(2)(py)(NH(3))] (4) were irradiated with either UV (λ = 366 nm) or white fluorescent light and the various photochemical and photobiological phenomena were characterized. HPLC coupled to UV/Vis and MS detection was used to identify photochemical species resulting from irradiation of 4 with UV and white light. These studies showed that various Pt(IV) and Pt(II) products formed during the photolysis. The mass spectra of Pt(IV) complexes showed Pt ions in both the positive as well as the negative mode while Pt(II) complexes resulted in only positively charged Pt(III) ions. Since cellular DNA is considered to be a key target for platinum antitumor drugs, the irreversible platination of calf thymus DNA by the photoactivated Pt(IV) complexes was followed by Atomic Adsorption spectrometry (AAS). The effect of adding chloride or biological reducing agents glutathione (GSH) and ascorbic acid on the rates of DNA platination where also studied. Upon activation by light, both compounds show similar binding behaviour to DNA, but the rates of DNA platination for 3 were faster than for 4. Both chloride and GSH protected DNA from platination by the photoactivated compounds; consistent with the trapping of reactive aqua-Pt species. The presence of ascorbate increased the level of platinum bound to DNA for photoactivated 4 but not for 3. Without photoactivation, little or no DNA platination was observed, either with or without ascorbate or GSH. Cytotoxicity studies with two human cancer cell lines underline the photochemotherapeutic potential of these compounds. Striking is the increase in cytotoxic potency with the replacement of an ammine by a pyridine ligand.  相似文献   

13.
The synthesis, characterization and DNA binding properties of the complex [Ru(terpy)(4,4'-(COLysCONH(2))(2)bpy)Cl](3+) (1) have been studied. Complex (1) hydrolyzes to (2) with a calculated rate constant K(h) = 2.35 ± 0.08 × 10(-4) s(-1) and binds coordinatively to ct-DNA, with a saturation r-value at about 0.1. Stabilization of the ct-DNA helix at low electrolyte (NaClO(4)) concentration (10 mM) and destabilization at higher electrolyte concentrations (50-200 mM) was observed. Circular dichroism studies indicate that the hydrolyzed complex binds to DNA, increasing the unwinding of the DNA helix with an unwinding angle calculated as Φ = 12 ± 2°. The positive LD signal observed at 350 nm indicates some kind of specificity in complex orientation towards the global DNA axis. Complex (2) binds specifically to G4 on the central part of the oligonucleotide duplexes d(CGCGCG)(2) and d(GTCGAC)(2), as evidenced by NMR spectroscopy. Both lysine moieties were found to interact most likely electrostatically with the DNA phosphates, assisting the coordinative binding and increasing the DNA affinity of the complex. Photoinduced DNA cleavage by (2), upon UVA irradiation was observed, but despite its relative high DNA affinity, it was incomplete (~12%).  相似文献   

14.
The interaction of aqua (N-salicylideneglycinato)copper(II) (Cu(salgly)2+) complex with calf thymus DNA has been investigated by cyclic voltammetry. Potential-modulated DNA cleavage in the presence of Cu(salgly)2+ complex was performed at a gold electrode in a thin layer cell. DNA can be efficiently cleaved by electrochemically reducing Cu(salgly)2+ complex to Cu(salgly)+ complex at -0.7 V (vs. Ag/AgCl). When the solution was aerated with a small flow of O2 during electrolysis, the extent of DNA cleavage was dramatically enhanced, and hydroxyl radical scavengers inhibited DNA cleavage. These results suggested that O2 and hydroxyl radical were involved in potential-modulated DNA cleavage reaction. The percentage of DNA cleavage was enhanced as the working potential was shifted to more negative values and the electrolysis time was increased. It was also dependent on the ratio of Cu(salgly)2+ complex to DNA concentration. The cleaved DNA fragments were separated by high performance liquid chromatography (HPLC). The experimental results indicated that the method for potential-modulated DNA cleavage by Cu(salgly)2+ complex was simple and efficient.  相似文献   

15.
The complexes [Cu(phen)(3)](ClO(4))(2) 1, [Cu(5,6-dmp)(3)](ClO(4))(2) 2, [Cu(dpq)(3)](ClO(4))(2) 3, [Zn(phen)(3)](ClO(4))(2) 4, [Zn(5,6-dmp)(3)](ClO(4))(2) 5 and [Zn(dpq)(3)](ClO(4))(2) 6, where phen = 1,10-phenanthroline, 5,6-dmp = 5,6-dimethyl-1,10-phenanthroline and dpq = dipyrido[3,2-d:2',3'-f]quinoxaline, have been isolated, characterized and their interaction with calf thymus DNA studied by using a host of physical methods. The X-ray crystal structures of rac-[Cu(5,6-dmp)(3)](ClO(4))(2) and rac-[Zn(5,6-dmp)(3)](ClO(4))(2) have been determined. While 2 possesses a regular elongated octahedral coordination geometry (REO), 5 possesses a distorted octahedral geometry. Absorption spectral titrations of the Cu(II) complexes with CT DNA reveal that the red-shift (12 nm) and DNA binding affinity of 3 (K(b), 7.5 x 10(4) M(-1)) are higher than those of 1 (red-shift, 6 nm; K(b), 9.6 x 10(3) M(-1)) indicating that the partial insertion of the extended phen ring of dpq ligand in between the DNA base pairs is deeper than that of phen ring. Also, 2 with a fluxional Cu(II) geometry interacts with DNA (K(b), 3.8 x 10(4) M(-1)) more strongly than 1 suggesting that the hydrophobic forces of interaction of 5,6 methyl groups on the phen ring is more pronounced than the partial intercalation of phen ring in the latter with a static geometry. The DNA binding affinity of 1 is lower than that of its Zn(ii) analogue 4, and, interestingly, the DNA binding affinity 2 of with a fluxional geometry is higher than that of its Zn(II) analogue 5 with a spherical geometry. It is remarkable that upon binding to DNA 3 shows an increase in viscosity higher than that the intercalator EthBr does, which is consistent with the above DNA binding affinities. The CD spectra show only one induced CD band on the characteristic positive band of CT DNA upon interaction with the phen (1,4) and dpq (3,6) complexes. In contrast, the 5,6-dmp complexes 2 and 5 bound to CT DNA show exciton-coupled biphasic CD signals with 2 showing CD signals more intense than 5. The Delta-enantiomer of rac-[Cu(5,6-dmp)(3)](2+) 2 binds specifically to the right-handed B-form of CT DNA at lower ionic strength (0.05 M NaCl) while the Lambda-enantiomer binds specifically to the left-handed Z-form of CT DNA generated by treating the B-form with 5 M NaCl. The complex 2 is stabilized in the higher oxidation state of Cu(II) more than its phen analogue 1 upon binding to DNA suggesting the involvement of electrostatic forces in DNA interaction of the former. In contrast, 3 bound to DNA is stabilized as Cu(I) rather than the Cu(II) oxidation state due to partial intercalative interaction of the dpq ligand. The efficiencies of the complexes to oxidatively cleave pUC19 DNA vary in the order, 3> 1 > 2 with 3 effecting 100% cleavage even at 10 microM complex concentration. However, interestingly, this order is reversed when the DNA cleavage is performed using H(2)O(2) as an activator and the highest cleavage efficiency of 2 is ascribed to its electrostatic interaction with the exterior phosphates of DNA.  相似文献   

16.
Oligodeoxynucleotides containing the double-headed nucleoside 5'(S)-C-(2-(thymin-1-yl)ethyl)thymidine were prepared by standard solid phase synthesis. The synthetic building block for incorporating the double-headed moiety was prepared from thymidine, which was stereoselectively converted to a protected 5'(S)-C-hydroxyethyl derivative and used to alkylate the additional thymine by a Mitsunobu reaction. The oligodeoxynucleotides were studied in different nucleic acid secondary structures: duplexes, bulged duplexes, three-way junctions and artificial DNA zipper motifs. The thermal stability of these complexes was studied, demonstrating an almost uniform thermal penalty of incorporating one double-headed nucleoside moiety into a duplex or a bulged duplex, comparable to the effects of the previously reported double-headed nucleoside 5'(S)-C-(thymin-1-yl)methylthymidine. The additional base showed only very small effects when incorporated into DNA or RNA three-way junctions. The various DNA zipper arrangements indicated that extending the linker from methylene to ethylene almost completely removed the selective minor groove base-base stacking interactions observed for the methylene linker in a (-3)-zipper, whereas interactions, although somewhat smaller, were observed for the ethylene linker in a (-4)-zipper motif.  相似文献   

17.
Ternary copper(II) complexes [Cu(l-lys)B(ClO4)](ClO4)(1-4), where B is a heterocyclic base, viz. 2,2'-bipyridine (bpy, 1), 1,10-phenanthroline (phen, 2), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq, 3) and dipyrido[3,2-a:2',3'-c]phenazene (dppz, 4), are prepared and their DNA binding and photo-induced DNA cleavage activity studied (l-lys =l-lysine). Complex 2, structurally characterized by X-ray crystallography, shows a square-pyramidal (4 + 1) coordination geometry in which the N,O-donor l-lysine and N,N-donor heterocyclic base bind at the basal plane and the perchlorate ligand is bonded at the elongated axial site. The crystal structure shows the presence of a pendant cationic amine moiety -(CH2)4NH3+ of l-lysine. The one-electron paramagnetic complexes display a d-d band in the range of 598-762 nm in DMF and exhibit cyclic voltammetric response due to Cu(II)/Cu(I) couple in the range of 0.07 to -0.20 V vs. SCE in DMF-Tris-HCl buffer. The complexes having phenanthroline bases display good binding propensity to the calf thymus DNA giving an order: 4 (dppz) > 3 (dpq) > 2 (phen)> 1 (bpy). Control cleavage experiments using pUC19 supercoiled DNA and distamycin suggest major groove binding for the dppz and minor groove binding for the other complexes. Complexes 2-4 show efficient DNA cleavage activity on UV (365 nm) or visible light (694 nm ruby laser) irradiation via a mechanistic pathway involving formation of singlet oxygen as the reactive species. The amino acid l-lysine bound to the metal shows photosensitizing effect at red light, while the heterocyclic bases are primarily DNA groove binders. The dpq and dppz ligands display red light-induced photosensitizing effects in copper-bound form.  相似文献   

18.
A new and sensitive electrochemical DNA hybridization detection assay, using tris(2,2′-bipyridyl)cobalt(III) [Co(bpy)33+]-doped silica nanoparticles as the oligonucleotide (ODN) labeling tag, and based on voltammetric detection of Co(bpy)33+ inside silica nanoparticles, is described. Electro-active Co(bpy)33+ is not possible for directly linking with DNA, it is doped into the silica nanoparticles in the process of nanoparticles synthesis for DNA labeling with trimethoxysilylpropydiethylenetriamine (DETA) and glutaraldehyde as linking agents. The Co(bpy)33+ labeled DNA probe is used to hybridize with target DNA immobilized on the surface of glassy carbon electrode. Only the complementary sequence DNA (cDNA) could form a double-stranded DNA (dsDNA) with the DNA probe labeled with Co(bpy)33+ and give an obvious electrochemical response. A three-base mismatch sequence and non-complementary sequence had negligible response. Due to the large number of Co(bpy)33+ molecules inside silica nanoparticles linked to oligonucleotide DNA probe, the assay showed a high sensitivity. It allows the detection at levels as low as 2.0×10−10 mol l−1 of the target oligonucleotides.  相似文献   

19.
Cellular DNA topoisomerase I is an important target in cancer chemotherapy. A chloroform extract of the root barks of Cudrania tricuspidata showed an inhibitory effect on mammalian DNA topoisomerase I. The topoisomerase I inhibitory compound was purified and identified as 2',5,7-trihydroxy-4',5'-(2,2-dimethylchromeno)-8-(3-hydroxy-3-methylbutyl) flavanone. The compound, temporarily designated as PKH-3, was shown to inhibit the activity of topoisomerase I with IC50 about 1.0 mM. Concentration of 10 microM PKH-3 caused 50% growth inhibition of human cancer cell U937. PKH-3-induced cell death was characterized with the cleavage of poly(ADP-ribose) polymerase (PARP) and pro-caspase 3. Furthermore, PKH-3 induced the fragmentation of DNA into multiples of 180 b.p. (an apoptotic DNA ladder), indicating that the inhibitor triggered apoptosis. This induction of apoptosis by PKH-3 was also confirmed using flow cytometry analysis. Taken together, these results suggest that PKH-3 may function by inhibiting oncogenic disease, at least in part, through the inhibition of topoisomerase I activity.  相似文献   

20.
The polaron might play an important role in the process of charge migration through duplex DNA stack. In the present work, we investigate properties of hole polarons in DNA molecules containing identical base pairs, such as poly(G)-poly(C) and poly(A)-poly(T), An extended tight-binding model (extended Su-Schrieffer-Heeger model), which involves the effect of an electric field in the direction of DNA stack, will be introduced. The transfer integral and electron-phonon coupling parameters in this model are obtained according to ab initio calculation for different base pair dimers. Calculations reveal that the polaron in poly(A)-poly(T) has a wider shape and a higher mobility under a specific electric field than that in poly(G)-poly(C) DNA stack.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号