首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The first condensed-phase preparation of ternary P-Ch-X cations (Ch=O-Te, X=F-I) is reported: [P5S3X2]+, [P5S2X2]+, and [P4S4X]+ (X=Br, I). [P5S3X2]+ is formed from the reaction of the Ag+/PX3 reagent with P4S3. The [P5S3X2]+ ions have a structure that is related to P4S5 by replacing P=S by P+--X and S in the four-membered ring by P(X). We provide evidence that the active ingredient of the Ag+/PX3 reagent is the (H2CCl2)Ag-X-PX2+ cation. The latter likely reacts with the HOMO of P4S3 in a concerted HOMO-LUMO addition to give the P5S3X2+ ion as the first species visible in situ in the low-temperature 31P NMR spectrum. The [P5S3X2]+ ions are metastable at -78 degrees C and disproportionate at slightly higher temperatures to give [P5S2X2]+ and [P4S4X]+, probably with the extrusion of 1/n (PX)n (X=Br, I). All six new cage compounds have been characterized by multinuclear NMR spectroscopy and, in part, by IR or Raman spectroscopy. The [P5S2X2]+ salts have a nortricyclane skeleton and were also characterized by X-ray crystallography. The structure of the [P4S4X]+ ion is related to that of P4S5 in that the exo-cage P=S bond is replaced by an isoelectronic P+--X moiety.  相似文献   

2.
Calix[4]arenes 1a,b having an electron-donating group, i.e., OH and OMe, at the lower rim reacted with thianthrene cation radical perchlorate in CH3CN at room temperature to give the corresponding thianthrenium perchlorates 3a,b in excellent yields. Treatment of 3a,b comprising a mixture of conformational isomers with NaSH.xH2O in DMF at reflux afforded the sulfur-containing cyclized compounds 4a,b, respectively. Compound 4a having a cone conformation consisted of two conformational isomers in a ratio of 0.077:1. Temperature-dependent 1H NMR study in DMF showed that conformational isomerization between the two isomers occurred with energy barriers of 14.97 and 14.10 kcal/mol at 100 and 110 degrees C, respectively. The Jobs plot of 4a against Ag+ picrate indicated that compound 4a strongly produced a 1:2 complex with Ag+ ions. Molecular mechanics calculations indicated that the conformation of the energy-minimized 4a-2Ag+ picrate complex had two crushed pyramidal geometries made up of Ag+ ion and four sulfur atoms, i.e., S1, S2, S4, S5 and S6, S7, S9, S10, respectively.  相似文献   

3.
Reactions of the dilithiated diols RCH2P(S)(CH2OLi)2 [R = Fc (1), Ph (2) (Fc = ferrocenyl)] with N3P3F6 in equimolar ratios at -80 degrees C result exclusively in the formation of two structural isomers of ansa-substituted compounds, endo-RCH2P(S)(CH2O)2[P(F)N]2(F2PN) [R = Fc (3a), Ph (4a)] and exo-RCH2P(S)(CH2O)2[P(F)N]2(F2PN) [R = Fc (3b), Ph (4b)], which are separated by column chromatography. Increasing the reaction temperature to -40 degrees C results in more of the exo isomers 3b and 4b at the expense of the endo isomers. The formation of the ansa-substituted compounds is found to depend on the dilithiation of the diols, as a reaction of the silylated phosphine sulfide FcCH2P(S)(CH2OSiMe3)2 (5) with N3P3F6 in the presence of CsF does not yield either 3a or 3b but instead gives the spiro isomer [FcCH2P(S)(CH2O)2 PN](F2PN)2 (6) as the disubstitution product of N3P3F6. The ansa isomers 3a and 3b are transformed into the spiro compound 6 in the presence of catalytic amounts of CsF at room temperature in THF, while 4a and 4b are transformed into the spiro compound [PhCH2P(S)(CH2O)2PN](F2PN)2 (7) under similar conditions. The novel conversions of ansa-substituted phosphazenes into spirocyclic phosphazenes were monitored by time-dependent 31P NMR spectroscopy. The effect of temperature on a transformation was studied by carrying out reactions at various temperatures in the range from -60 to +33 degrees C for 3b. In addition, compounds 3a, 3b, 4a, and 6 were structurally characterized. In the case of the ansa compounds, the nitrogen atom flanked by the bridging phosphorus sites was found to deviate significantly from the plane defined by the five remaining atoms of the phosphazene ring.  相似文献   

4.
5.
Reaction between Ag(I) salts and the three isomers of (aminomethyl)pyridines, viz., 2-amp, 3-amp, and 4-amp, lead to either discrete or polymeric (1-D and 2-D) structures influenced by anions and closed shell Ag.Ag contacts. Characterization data for Ag(2-amp)BF(4) (1) follow: monoclinic, space group C2/c, with a = 16.788(2) A, b = 11.5719(6) A, c = 11.3864(7) A, beta = 123.671(8) degrees, and Z = 8. For Ag(2)(2-amp)(3)(PF(6))(2) (2): monoclinic, space group P2(1)/a, with a = 10.029(7) A, b = 20.291(12) A, c = 13.907(6) A, beta = 95.38(5) degrees, and Z = 4. For Ag(2)(3-amp)(3)(PF(6))(2) (4): triclinic, space group P1, with a = 10.4482(7) A, b = 11.1468(9) A, c = 12.2720(11) A, alpha = 81.018(7) degrees, beta = 80.668(6) degrees, gamma = 80.977(6) degrees, and Z = 2. For Ag(4-amp)BF(4).0.75CH(3)CN (5): orthorhombic, space group C222(1), with a = 9.272(2) A, b = 16.164(12) A, c = 27.851(2) A, and Z = 8. For Ag(4-amp)PF(6) (6): monoclinic, space group P2(1)/m, with a = 5.2089(7) A, b = 14.3950(17) A, c = 7.0149(14) A, beta = 96.538(14) degrees, and Z = 2. While Ag(I) is 2-coordinate in 1, 5 and 6, it shows 3-coordination in 2 and 4. Compound 1 consists of a 1-D polymeric cation chain with interchain Ag...Ag contacts and the anions sitting on the edges of the chains. The dication in 2 is held in the form of a circular helicate by closed shell Ag...Ag interactions. Compound 4 generates a 2-D network with channels big enough to accommodate the anions. Compound 5 is a 2-D chiral network of chains connected by Ag...Ag contacts. Compound 6 shows a simple 1-D chain structure with an alternating arrangement of cationic chains and anions.  相似文献   

6.
The first solid-state structures of complexed P3N3X6 (X = halogen) are reported for X = Cl. The compounds were obtained from P3N3Cl6 and Ag[Al(OR)4] salts in CH2Cl2/CS2 solution. The very weakly coordinating anion with R = C(CF3)3 led to the salt Ag(P3N3Cl6)2+[Al(OR)4]- (1), but the more strongly coordinating anion with R' = C(CH3)(CF3)2 gave the molecular adduct (P3N3Cl6)AgAl(OR')4 (3). Crystals of [Ag(CH2Cl2)(P3N3Cl6)2]+[Al(OR)4]- (2), in which Ag+ is coordinated by two phosphazene and one CH2Cl2 ligands, were isolated from CH2Cl2 solution. The three compounds were characterized by their X-ray structures, and 1 and 3 also by NMR and vibrational spectroscopy. Solution and solid-state 31P NMR investigations in combination with quantum chemically calculated chemical shifts show that the 31P NMR shifts of free and silver-coordinated P3N3Cl6 differ by less than 3 ppm and indicate a very weakly bound P3N3Cl6 ligand in 1. The experimental silver ion affinity (SIA) of the phosphazene ligand was derived from the solid-state structure of 3. The SIA shows that (PNCl2)3 is only a slightly stronger Lewis base than P4 and CH2Cl2, while other ligands such as S8, P4S3, toluene, and 1,2-Cl2C2H4 are far stronger ligands towards the silver cation. The energetics of the complexes were assessed with inclusion of entropic, thermal, and solvation contributions (MP2/TZVPP, COSMO). The formation of the cations in 1, 2, and 3 was calculated to be exergonic by delta(r)G(degrees)(CH2Cl2) = -97, -107, and -27 kJ mol(-1), respectively. All prepared complexes are thermally stable; formation of P3N3Cl5+ and AgCl was not observed, even at 60 degrees C in an ultrasonic bath. Therefore, the formation of P3N3Cl5+ was investigated by quantum chemical calculations. Other possible reaction pathways that could lead to the successful preparation of P3N3X5+ salts were defined.  相似文献   

7.
Resorcinarene tetraphosphinite ligands, P4, react with silver(I) trifluoroacetate or silver(I) triflate, AgX, to give the corresponding [Ag4X4(P4)] complexes. The resorcinarene skeleton in these complexes adopts a boat conformation with the silver(I) phosphinite units on the horizontal, rather than the upright, arene units of the resorcinarene. The [Ag4X4(P4)] complexes react with free P4 ligand to yield the [Ag2X2(P4)] or [AgX(P4)] complexes, which are characterized in solution by NMR spectroscopy to have a conformation opposite to that of the [Ag4X4(P4)] complexes; the silver(I) phosphinite groups are on the upright arene rings of the resorcinarene "boat" instead of the horizontal arene units. There is an easy equilibrium between these complexes. When X = triflate, the [Ag4X4(P4)] complexes disproportionate and add aqua ligands during slow crystallization to give "capsule complexes", which are characterized crystallographically as [Ag10(O3SCF3)10(OH2)6(P4)2], [Ag10(O3SCF3)6(OH2)8(P4)2][O3SCF3]4, or [Ag13(O3SCF3)13(OH2)7(P4)2] depending on the resorcinarene tetraphosphinite ligand P4 used. These unusual capsule complexes are formed by the tail-to-tail self-assembly of pairs of [Ag4(P4)]4+ units linked by additional silver ions that bind to the phenyl substituents of one resorcinarene through {Ag(eta2-C6H5)}+ binding and to the bridging triflate ligands, aqua ligands, or both of the other resorcinarene unit.  相似文献   

8.
The reaction of [MCl2(NCMe)2] (M = Pd or Pt) with 2 molar equiv of MeC(CH2ER)3 (E = Se, R = Me; E = Te, R = Me or Ph) and 2 molar equiv of TlPF6 affords the bis ligand complexes [M(MeC(CH2ER)3)2][PF6]2. The crystal structure of [Pt(MeC(CH2SeMe)3)2][PF6]2 (C16H36F12P2PtSe6, a = 12.272(10) A, b = 18.563(9) A, c = 15.285(7) A, beta = 113.18(3) degrees, monoclinic, P2(1)/n, Z = 4) confirms distorted square planar Se4 coordination at Pt(II), derived from two bidentate tripod selenoethers with the remaining arm not coordinated and directed away from the metal center. Solution NMR studies indicate that these species are fluxional and that the telluroether complexes are rather unstable in solution. The octahedral bis tripod complexes [Ru(MeC(CH2SMe)3)2][CF3-SO3]2 and [Ru(MeC(CH2TePh)3)2][CF3SO3]2 are obtained from [Ru(dmf)6][CF3SO3]3 and tripod ligand in EtOH solution. The thioether complex (C18H36F6O6RuS8, a = 8.658(3) A, b = 11.533(3) A, c = 8.659(2) A, alpha = 108.33(2) degrees, beta = 91.53(3) degrees, gamma = 106.01(2) degrees, triclinic, P1, Z = 1) is isostructural with its selenoether analogue, involving two facially coordinated trithioether ligands in the syn configuration. NMR spectroscopy confirms that this configuration is retained in solution for all of the bis tripod Ru(II) complexes. These low-spin d6 complexes show unusually high ligand field splittings. The hexaselenoether Rh(III) complex [Rh(MeC(CH2SeMe)3)2][PF6]3 was obtained by treatment of [Rh(H2O)6]3+ with 2 molar equiv of MeC(CH2SeMe)3 in aqueous MeOH in the presence of excess PF6- anion, while the iridium(III) analogue [Ir(MeC(CH2SeMe)3)2][PF6]3 was obtained via the reaction of the Ir(I) precursor [IrCl(C8H14)2]2 with the selenoether tripod in MeOH/aqueous HBF4. NMR studies reveal different invertomers in solution for both the Rh and Ir species. The Cu(I) complexes [Cu(MeC(CH2ER)3)2]PF6 were obtained from [Cu(NCMe)4]PF6 and tripod ligand in CH2Cl2 solution. The corresponding Ag(I) species [Ag(MeC(CH2TeR)3)2]CF3SO3 (R = Me or Ph) were obtained from Ag[CF3SO3] and tripod telluroether. In contrast, a similar reaction with 2 molar equiv of MeC(CH2SeMe)3 afforded only the 1:1 complex [Ag(MeC(CH2SeMe)3)]CF3SO3. The structure of this species (C9H18AgF3O3SSe3, a = 8.120(3) A, b = 15.374(3) A, c = 14.071(2) A, beta = 93.86(2) degrees, monoclinic, P2(1)/n, Z = 4) reveals a distorted trigonal planar geometry at Ag(I) derived from one bidentate selenoether and one monodentate selenoether. These units are then linked to adjacent Ag(I) ions to give a one-dimensional linear chain cation.  相似文献   

9.
The silver aluminates AgAl[OC(CF3)2(R)]4 (R = H, CH3, CF3) react with solutions of white phosphorus P4 to give complexes that bind one or two almost undistorted tetrahedral P4 molecules in an fashion: [Ag(P4)2]+[Al(OC(CF3)3)4]+ (1) containing the first homoleptic metal-phosphorus cation, the molecular species (P4)AgAl[OC(CH3)(CF3)2]4 (2), and the dimeric Ag(mu,eta2-P4)Ag bridged [(P4)AgAl[OC(H)(CF3)2]4]2 (3). Compounds 1-3 were characterized by variable-temperature (VT) 31P NMR spectroscopy (1 also by VT 32P MAS-NMR spectroscopy), Raman spectroscopy, and single-crystal X-ray crystallography. Other Ag:P4 ratios did not lead to new species, and this observation was rationalized on thermodynamic grounds. The Ag(P4)2+ ion has an almost planar coordination environment around the Ag+ ion due to d(x2 - y2)(Ag) --> sigma*(P-P) backbonding. Calculations (HF-DFT) on six Ag(P4)2+ isomers 4a-f showed that the planar eta2 form 4a is only slightly favored by 5.2 kJ mol(-1) over the tetrahedral eta2 species 4b; eta1-P4 and eta3-P4 complexes are less favorable (27-76 kJ mol(-1)). The bonding of the P4 moiety in [RhCl(eta2-P4)(PPh3)2], the only compound in which an eta2 bonding mode of a tetrahedral P4 molecule has been claimed, must be regarded as a tetraphosphabicyclobutane, and not as a tetrahedro-P4 complex, on the basis of the published NMR and vibrational spectra, the calculated geometry of [RhCl(P4)(PH3)2] (10), the highly endothermic (385 kJ mol(-1)) calculated dissociation enthalpy of 10 into P4 and RhCl(PH3)2 (11), as well as atoms in molecules (AIM) and natural bond orbital (NBO) population analyses of 10 and the Ag(P4)2+ ion. Therefore, 1-3 are the first examples of species containing eta2-coordinated tetrahedral P4 molecules.  相似文献   

10.
We present a highly unusual example of self-assembly, specifically a polar, mixed-ligand cage which forms in preference to symmetrical homo-ligand products, and which suggests that steric effects can be exploited to obtain novel non-uniform polyhedral cages. In particular, reaction between the bulky tripodal triphosphine 2,4,6-tris(diphenylphosphino)triazine, L1, the non-bulky tripodal trinitrile 2,4,6-tris(cyanomethyl)trimethylbenzene, L2 and silver hexafluoroantimonate, AgSbF6, in a 3:1:4 ratio gives the mixed-ligand aggregate [Ag4(L1)3(L2)(SbF6)]3+, 1-SbF6, instantly as the only product in quantitative yield. The X-ray crystal structure of complex 1-SbF6 is consistent with the suspected solution-state structure. The cage derives from trigonal-pyramidal geometry, the basal vertices of which are defined by three bulky triphosphines, L1, and the apical vertex by the non-bulky trinitrile, L2. There is apical elongation amounting to 19% in comparison to the ideal uniform tetrahedron. The cage also encapsulates an SbF6 anion. 19F NMR spectra in solution for the analogous PF6 complex [Ag4(L1)3(L2)(PF6)]3+, 1-PF6, confirm that one anion is also encapsulated in solution. The synthesis of the analogous CF3SO3(-) complex, [Ag4(L1)3(L2)(OTf)]3+, 1-OTf, in solution is also described, although 1-PF6 and 1-OTf could not be isolated due to slow decomposition in solution. The selective formation of these mixed-ligand cages is discussed in terms of ligand-ligand and ligand-included anion steric repulsions, which we propose prevent the formation of the competing hypothetical homo-ligand tetrahedral structure [Ag4(L1)4(SbF6)]3+, and thus favour the mixed ligand cage. "Cage cone angles" for L1 and L2 are estimated at 115 degrees and 101 degrees, respectively. Variable-temperature 31P NMR spectroscopy shows that complex 1-SbF6 and the related previously reported partial tetrahedral complex [Ag4(L1)3(anion)]3+ undergo dynamic twisting processes in solution between enantiomeric C3-symmetry conformations.  相似文献   

11.
The salts [AsX4][As(OTeF5)6] and [AsBr4][AsF(OTeF5)5] (X = Cl, Br) have been prepared by oxidation of AsX3 with XOTeF5 in the presence of the OTeF5 acceptors As(OTeF5)5 and AsF(OTeF5)4. The mixed salts [AsCl4][Sb(OTeF5)6-nCl(n-2)] and [AsCl4][Sb(OTeF5)6-nCl(n)] (n > or = 2) have also been prepared. The AsBr4+ cation has been fully structurally characterized for the first time in SO2ClF solution by 75As NMR spectroscopy and in the solid state by a single-crystal X-ray diffraction study of [AsBr4][AsF(OTeFs)5]: P1, a = 9.778(4) A, b = 17.731(7) A, c = 18.870(8) A, alpha = 103.53(4)degrees, beta = 103.53(4) degrees, gamma = 105.10(4) degrees, V = 2915(2) A3, Z = 4, and R1 = 0.0368 at -183 degrees C. The crystal structure determination and solution 75As NMR study of the related [AsCl4][As(OTeF5)6] salt have also been carried out: [AsCl4][As(OTeF5)6], R3, a = 9.8741(14) A, c = 55.301(11) A, V= 4669(1) A3, Z = 6, and R1 = 0.0438 at -123 degrees C; and R3, a = 19.688(3) A, c = 55.264(11) A, V= 18552(5) A3, Z = 24, and R1 = 0.1341 at -183 degrees C. The crystal structure of the As(OTeF5)6- salt reveals weaker interactions between the anion and cation than in the previously known AsF6- salt. The AsF(OTeF5)5- anion is reported for the first time and is also weakly coordinating with respect to the AsBr4+ cation. Both cations are undistorted tetrahedra with bond lengths of 2.041(5)-2.056(3) A for AsCl4+ and 2.225(2)-2.236(2) A for AsBr4+. The Raman spectra are consistent with undistorted AsX4+ tetrahedra and have been assigned under Td point symmetry. The 35Cl/37Cl isotope shifts have been observed and assigned for AsCl4+, and the geometrical parameters and vibrational frequencies of all known and presently unknown PnX4+ (Pn = P, As, Sb, Bi; X = F, Cl, Br, I) cations have been calculated using density functional theory methods.  相似文献   

12.
The supramolecular assistance to Pd(0)/Cu(I)-catalyzed cyclotrimerization of stannylated norbornene 7 has been investigated to give molecular bowl 1syn in a stereoselective fashion. Following a divergent strategy, racemic norbornene 7 was synthesized in satisfactory yield. Self-coupling, promoted by Pd(0)/Cu(I) catalysis acting in synergy with CsF, yielded molecular bowl 1syn in a moderate 30% yield. The reaction diastereoselectivity is affected by the concentration of Cu(I) and Cs+: increasing quantities of the cations enhanced the syn/anti ratio of the isolated cyclotrimer from statistical (1:3) to a more desirable (4.5:1) ratio, in favor of the molecular bowl 1syn. 1H NMR spectroscopic studies suggested the coordinating affinity of 1syn toward transition metals Cu(I), Ag(I), and Au(I), to account for the observed templation effect. In particular, the tridentate 1syn has been shown to bind to one Ag(I) cation in the assembly process that is driven with enthalpy (Delta H degrees = -19 +/- 2 kcal/mol, Delta S degrees = -45 eu). The complete coordination was not cooperative, and was hypothesized to be impeded with the adverse entropy. Accordingly, density functional theory (BP86) calculations of 1syn and its mono-, bis-, and tris-Ag(I) complexes suggested that the coordination of one to three silver cations is highly exothermic. The calculations also revealed that the bowl constriction is necessary for the aromatic arms to become preorganized and bind to a silver cation(s) (Delta E approximately 8 kcal/mol). Ultimately, Ag(I) has been shown to assist the diastereoselective formation of 1syn, lending support to the notion of template-directed synthesis.  相似文献   

13.
PX(4) (+)[Al(OR)(4)](-) (X=I: 1 a, X=Br: 1 b) was prepared from X(2), PX(3), and Ag[Al(OR)(4)] [R=C(CF(3))(3)] in CH(2)Cl(2) at -30 degrees C in 69-86 % yield. P(2)X(5) (+) salts were prepared from 2 PX(3) and Ag[Al(OR)(4)] in CH(2)Cl(2) at -30 degrees C yielding almost quantitatively P(2)X(5) (+)[Al(OR)(4)](-) (X=I: 3 a, X=Br: 3 b). The phosphorus-rich P(5)X(2) (+) salts arose from the reaction of cold (-78 degrees C) mixtures of PX(3), P(4), and Ag[Al(OR)(4)] giving P(5)X(2) (+)[Al(OR)(4)](-) (X=I: 4 a, X=Br: 4 b) with a C(2v)-symmetric P(5) cage. Silver salt metathesis presumably generated unstable PX(2) (+) cations from PX(3) and Ag[Al(OR)(4)] (X=Br, I) that acted as electrophilic carbene analogues and inserted into the Xbond;X (Pbond;X/Pbond;P) bond of X(2) (PX(3)/P(4)) leading to the highly electrophilic and CH(2)Cl(2)-soluble PX(4) (+) (P(2)X(5) (+)/P(5)X(2) (+)) salts. Reactions that aimed to synthesize P(2)I(3) (+) from P(2)I(4) and Ag[Al(OR)(4)] instead led to anion decomposition and the formation of P(2)I(5)(CS(2))(+)[(RO)(3)Al-F-Al(OR)(3)](-) (5). All salts were characterized by variable-temperature solution NMR studies (3 b also by (31)P MAS NMR), Raman and/or IR spectroscopy as well as X-ray crystallography (with the exception of 4 a). The thermochemical volumes of the Pbond;X cations are 121 (PBr(4) (+)), 161 (PI(4) (+)), 194 (P(2)Br(5) (+)), 271 (P(2)I(5) (+)), and 180 A(3) (P(5)Br(2) (+)). The observed reactions were fully accounted for by thermochemical calculations based on (RI-)MP2/TZVPP ab initio results and COSMO solvation enthalpy calculations (CH(2)Cl(2) solution). The enthalpies of formation of the gaseous Pbond;X cations were derived as +764 (PI(4) (+)), +617 (PBr(4) (+)), +749 (P(2)I(5) (+)), +579 (P(2)Br(5) (+)), +762 (P(5)I(2) (+)), and +705 kJ mol(-1) (P(5)Br(2) (+)). The insertion of the intermediately prepared carbene analogue PX(2) (+) cations into the respective bonds were calculated, at the (RI-)MP2/TZVPP level, to be exergonic at 298 K in CH(2)Cl(2) by Delta(r)G(CH(2)Cl(2))=-133.5 (PI(4) (+)), -183.9 (PBr(4) (+)), -106.5 (P(2)I(5) (+)), -81.5 (P(2)Br(5) (+)), -113.2 (P(5)I(2) (+)), and -114.5 kJ mol(-1) (P(5)Br(2) (+)).  相似文献   

14.
Upon treating elemental sulfur with [AgSbF(6)], [AgAl(hfip)(4)], [AgAl(pftb)(4)] (hfip=OCH(CF(3))(2), pftb =OC(CF(3))(3)) the compounds [Ag(S(8))(2)][SbF(6)] (1), [AgS(8)][Al(hfip)(4)] (2), and [Ag(S(8))(2)](+)[[Al(pftb)(4)](-) (3) formed in SO(2) (1), CS(2) (2), or CH(2)Cl(2) (3). Compounds 1-3 were characterized by single-crystal X-ray structure determinations: 1 by Raman spectroscopy, 2 and 3 by solution NMR spectroscopy and elemental analyses. Single crystals of [Ag(S(8))(2)](+)[Sb(OTeF(5))(6)](-) 4 were obtained from a disproportionation reaction and only characterized by X-ray crystal structure analysis. The Ag(+) ion in 1 coordinates two monodentate SbF(6) (-) anions and two bidentate S(8) rings in the 1,3-position. Compound 2 contains an almost C(4v)-symmetric [AgS(8)](+) moiety; this is the first example of an eta(4)-coordinated S(8) ring (d(Agbond;S)=2.84-3.00 A). Compounds 3 and 4, with the least basic anions, contain undistorted, approximately centrosymmetric Ag(eta(4)-S(8))(2) (+) cations with less symmetric eta(4)-coordinated S(8) rings (d(Agbond;S)=2.68-3.35 A). The thermochemical radius and volume of the undistorted Ag(S(8))(2) (+) cation was deduced as r(therm)(Ag(S(8))(2) (+))=3.378+ 0.076/-0.120 A and V(therm)(Ag(S(8))(2) (+))=417+4/-6 A(3). AgS(8) (+) and several isomers of the Ag(S(8))(2) (+) cation were optimized at the BP86, B3LYP, and MP2 levels by using the SVP and TZVPP basis sets. An analysis of the calculated geometries showed the MP2/TZVPP level to give geometries closest to the experimental data. Neither BP86 nor B3LYP reproduced the longer weak dispersive Agbond;S interactions in Ag(eta(4)-S(8))(2) (+) but led to Ag(eta(3)-S(8))(2) (+) geometries. With the most accurate MP2/TZVPP level, the enthalpies of formation of the gaseous [AgS(8)](+) and [Ag(S(8))(2)](+) cations were established as Delta(f)H(298)([Ag(S(8))(2)](+), g)=856 kJ mol(-1) and Delta(f)H(298)([AgS(8)](+), g)=902 kJ mol(-1). It is shown that the [AgS(8)](+) moiety in 2 and the [AgS(8)](2) (+) cations in 3 and 4 are the best approximation of these ions, which were earlier observed by MS methods. Both cations reside in shallow potential-energy wells where larger structural changes only lead to small increases in the overall energy. It is shown that the covalent Agbond;S bonding contributions in both cations may be described by two components: i) the interaction of the spherical empty Ag 5s(0) acceptor orbital with the filled S 3p(2) lone-pair donor orbitals and ii) the interaction of the empty Ag 5p(0) acceptor orbitals with the filled S 3p(2) lone-pair donor orbitals. This latter contribution is responsible for the observed low symmetry of the centrosymmetric Ag(eta(4)-S(8))(2) (+) cation. The positive charge transferred from the Ag(+) ion in 1-4 to the coordinated sulfur atoms is delocalized over all the atoms in the S(8) ring by multiple 3p(2)-->3sigma* interactions that result in a small long-short-long-short Sbond;S bond-length alternation starting from S1 with the shortest Agbond;S length. The driving force for all these weak bonding interactions is positive charge delocalization from the formally fully localized charge of the Ag(+) ion.  相似文献   

15.
In analogy to our successful "PX2+" insertion reactions, an "AsX2+" insertion route was explored to obtain new arsenic halogen cations. Two new salts were prepared: AsBr4+[Al(OR)4]-, starting from AsBr3, Br2 and Ag[Al(OR)4], and I2As-PI3+[Al(OR)]4 from AsI3, PI3 and Ag[Al(OR)4](R=C(CF3)3). The first cation is formally a product of an "AsBr2+" insertion into the Br2 molecule and the latter clearly a "PI2+" insertion into the As-I bond of the AsI3 molecule. Both compounds were characterized by IR and NMR spectroscopy, the first also by its X-ray structure. Reactions of Ag[Al(OR)4] with AsI3 do not lead to ionization and AgI formation but rather lead to a marginally stable Ag(AsI3)2+[Al(OR)]4 salt. Despite many attempts we failed to prepare other PX-cation analogues such as AsI4+, As2X5+ and P4AsX2+(X=Br, I). To explain these negative results the thermodynamics of the formation of EX2+, EX4+ and E2X5+(E = As, P; X = Br, I) was carefully analyzed with MP2/TZVPP calculations and inclusion of entropy and solvation effects. We show that As2Br5+ is in very rapid equilibrium with AsBr2+ and AsBr3(DeltaGo((CH2Cl2))=+30 kJ mol(-1)). The extremely reactive AsBr2+ cation available in the equilibrium accounts for the observed decomposition of the [Al(OR)4]- anion. By contrast, the stability of AsI3 against Ag[Al(OR)4] appears to be kinetic and, if prepared by a suitable route, As2I5+ would be expected to have a stability intermediate between the known P2I5+ and P2Br5+.  相似文献   

16.
The reaction of an S-bridged Co2(III)Ag3(I) pentanuclear complex, [Ag3[Co(aet)3]2][BF4]3 (aet = NH2CH2CH2S-), with paraformaldehyde in basic acetonitrile, followed by adding aqueous ammonia, produced an aza-capped Co2(III)-Ag3(I) complex, [Ag3[Co(L)]2]3+ ([1]3+) (L = N(CH2NHCH2CH2S-)3). The crystal structure of [1]3+ was determined by X-ray crystallography. [1][PF6]3 x H2O, empirical formula C18H44Ag3Co2F18N8OP3S6, crystallizes in the tetragonal space group 142m with a = 13.012(1) A, c = 24.707(2) A, and Z = 4. In [1]3+ the two aza-capped [Co(L)] units are linked by three Ag(I) atoms, such that the two Co(III) atoms are encapsulated in a macrobicyclic metallocage, [Ag3(I)(L)2]3-. [1]3+ was converted to an aza-capped Co4(III)Zn4(II) octanuclear complex, [Zn4O[Co(L)]4]6+ ([2]6+), by reaction with I- in the presence of Zn2+ and ZnO in water. The crystal structure of [2]6+ was also determined by X-ray crystallography. [2][PF6]6 x 8H2O, empirical formula C36H100Co4F36N16O9P6S12Zn4, crystallizes in the monoclinic space group P2(1/n) with a = 14.33(7) A, b = 25.67(10) A, c = 24.83(6) A, beta = 101.3(3) degrees , and Z = 4. In [2]6+ each of four [Co(L)] units is bound to each trigonal Zn3(II) face of the tetrahedral [Zn4(II)O]6+ core, such that each Co(III) atom is encapsulated in a macrobicyclic [Zn4(II)O(L)] fragment. Treatment of [2]6+ with a basic aqueous solution resulted in a cleavage of the Zn-S bonds to produce an aza-capped Co(III) mononuclear complex, [Co(L)] ([3]), from which [1]3+ is readily reproduced by the reaction with Ag+ in water. All the reactions were found to proceed with retention of the absolute configuration (delta or lambda) of the Co(III) chiral centers; deltadelta-[1]3+, deltadeltadeltadelta-[2]6+, and A-[3] were derived from deltadelta-[Ag3[Co(aet)3]2]3+. The contributions to circular dichroism (CD) from the triple helicity in [1]3+, besides from the asymmetric N and S donor atoms and the Co(III) chiral centers in [1]3+ and [2]6+, were estimated by comparing the CD spectra of deltadelta-[1]3+, deltadeltadeltadelta-[2]6+, and delta-[3].  相似文献   

17.
Complexes [PF6 subset(Ag3(titmb)2](PF6)2 (8) and {SbF6 subset[Ag3(titmb)2](SbF6)2}.H2O.1.5 CH3OH (9) are obtained by reaction of titmb and Ag+ salts with different anions (PF6(-) and SbF6(-)), and crystal structures reveal that they are both M3L2 cage complexes with short Ag...F interactions between the silver atoms and the fluorine atoms of the anions. In complex 8, a novel cage dimer is formed by weak Ag...F contacts; an unique cage tetramer formed via Ag...pi interactions (Ag...eta5-imidazole) between dimers and an infinite 1D cage chain is presented. However, each of the external non-disordered SbF6(-) anions connect with six cage 9s via Ag...F contacts, and each cage 9 in turn connects with three SbF6(-) anions to form a 2D network cage layer; and the layers are connected by pi-pi interactions to form a 3D network. The anion-exchange reactions of four Ag3L2 type complexes ([BF4 subset(Ag3(titmb)2](BF4)2 (6), [ClO4 subset(Ag3(titmb)2](ClO4)2 (7b), [PF6 subset(Ag3(titmb)2](PF6)2 (8) and [SbF6 subset(Ag3(titmb)2](SbF6)2.1.5CH3OH (9)) with tetrahedral and octahedral anions (ClO4(-), BF4(-), PF6(-) and SbF6(-)) are also reported. The anion-exchange experiments demonstrate that the anion selective order is SbF6(-) > PF6(-) > BF4(-), ClO4(-), and this anion receptor is preferred to trap octahedral and tetrahedral anions rather than linear or triangle anions; SbF6(-) is the biggest and most preferable one, so far. The dimensions of cage complexes with or without internal anions, anion-exchange reactions, cage assembly and anion inclusions, silver(I) coordination environments, Ag-F and Ag-pi interactions of Ag3L2 complexes 1-9 are discussed.  相似文献   

18.
Upon reacting P(4)S(3) with AgAl(hfip)(4) and AgAl(pftb)(4) [hfip = OC(H)(CF(3))(2); pftb = OC(CF(3))(3)], the compounds Ag(P(4)S(3))Al(hfip)(4) 1 and Ag(P(4)S(3))(2)(+)[Al(pftb)(4)](-) 2 formed in CS(2) (1) or CS(2)/CH(2)Cl(2) (2) solution. Compounds 1 and 2 were characterized by single-crystal X-ray structure determinations, Raman and solution NMR spectroscopy, and elemental analyses. One-dimensional chains of [Ag(P(4)S(3))(x)](infinity) (x = 1, 1; x = 2, 2) formed in the solid state with P(4)S(3) ligands that bridge through a 1,3-P,S, a 2,4-P,S, or a 3,4-P,P eta(1) coordination to the silver ions. Compound 2 with the least basic anion contains the first homoleptic metal(P(4)S(3)) complex. Compounds 1 and 2 also include the long sought sulfur coordination of P(4)S(3). Raman spectra of 1 and 2 were assigned on the basis of DFT calculations of related species. The influence of the silver coordination on the geometry of the P(4)S(3) cage is discussed, additionally aided by DFT calculations. Consequences for the frequently observed degradation of the cage are suggested. An experimental silver ion affinity scale based on the solid-state structures of several weak Lewis acid base adducts of type (L)AgAl(hfip)(4) is given. The affinity of the ligand L to the silver ion increases according to P(4) < CH(2)Cl(2) < P(4)S(3) < S(8) < 1,2-C(2)H(4)Cl(2) < toluene.  相似文献   

19.
The mechanism and the thermodynamics of the formation of EX2+, EX4+ and E2X5+ (E = As, P; X = Br, I) was carefully analyzed with MP2/TZVPP calculations and inclusion of entropy and solvation effects (COSMO model approximating CH2Cl2). Thus, as likely intermediates the complexes of Ag+ and one or two EX3 as well as EX3/X2 were optimized. The global minimum isomers of the Ag(EX3)2+ intermediates were found to be P-coordinated Ag(PI3)2+ and (BrPBr2)Ag(PBr3)+ but exclusively halogen coordinated Ag(X2AsX)2+ complexes. Similarly complicated is the situation for the Ag(EX3)(X2)+ intermediates: (I3E)Ag(I2)+, (BrAsBr2)Ag(Br2)+ and (Br3P)(Br-Br)Ag+ complexes were found to be the global minima. Based on all available results likely mechanisms for the formation of the known PX4+, AsBr4+, P2X5+ salts (X = Br, I) from these intermediates were proposed. An explanation for the failure to prepare an AsI4+ salt is also given.  相似文献   

20.
Oxidation of Me(6)M(2) (M = Ge, Sn) and Me(4)Pb with the CB(11)Me(12)(*) radical in alkane solvents produced the insoluble salts Me(3)M(+)CB(11)Me(12)(-), characterized by CP-MAS NMR and EXAFS. The cations interact with methyl groups of CB(11)Me(12)(-) with coordination strength increasing from Pb to Ge. Density functional theory (DFT) calculations for the isolated ion pairs, Me(3)M(+)CB(11)Me(12)(-) (M = Ge, Sn), revealed three isomers with the cation above methyl 2, 7, or 12, and not above a BB edge or a BBB triangle. The interaction has a considerable covalent component, with the cation attempting to perform a backside S(E)2 substitution on the methyl carbon. In a fourth less favorable isomer the cation is near methyl 1, inclined toward methyl 2, and interacts with hydrogens. DFT atomic charge distributions and plots of the electrostatic potential on the surface of spheres centered at the CB(11)H(12)(-) and CB(11)Me(12)(-) icosahedra display the effects of uneven charge distribution within the anion and contradict the common belief that the negative charge of the cage anion is concentrated primarily on the cage boron atoms 7-12; in CB(11)Me(12)(-), roughly half is on the cage carbon and the rest on methyls 7-12.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号