首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The major obstacle in the use of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) instruments in the analysis of complex proteome samples is the lack of a direct coupling of a highly resolving separation technique with the mass spectrometer itself. To overcome this drawback, a spotting device for capillary and nanoflow liquid chromatography (LC) with a special liquid deposition principle for lowest volumes was developed. The instrument is able to perform MALDI spotting in real time in order to deposit the LC run on the MALDI plate, and therefore couples the high resolution power of nano-RP-HPLC separation directly with MALDI-MS. This work describes the development and optimization of a method for spotting with online matrix addition, and illustrates its use in the analysis of a complex proteome sample.  相似文献   

2.
Direct mass spectrometric analysis of complex biological samples is becoming an increasingly useful technique in the field of proteomics. Matrix-assisted laser desorption/ionization mass spectroscopy (MALDI-MS) is a rapid and sensitive analytical tool well suited for obtaining molecular weights of peptides and proteins from complex samples. Here, a fast and simple approach to cellular protein profiling is described in which mammalian cells are lysed directly in the MALDI matrix 2,5-dihydroxybenzoic acid (DHB) and mass analyzed using MALDI-time of flight (TOF). Using the unique MALDI mass spectral "fingerprint" generated in these analyses, it is possible to differentiate among several different mammalian cell lines. A number of techniques, including MALDI-post source decay (PSD), MALDI tandem time-of-flight (TOF-TOF), MALDI-Fourier transform ion cyclotron resonance (FTICR), and nanoflow liquid chromatography followed by electrospray ionization and tandem mass spectrometry (LC-ESI-MS/MS) were employed to attempt to identify the proteins represented in the MALDI spectra. Performing a tryptic digestion of the supernatant of the cells lysed in DHB with subsequent LC-ESI-MS/MS analysis was by far the most successful method to identify proteins.  相似文献   

3.
A two-dimensional capillary array liquid chromatography system coupled with matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) was developed for high-throughput comprehensive proteomic analysis, in which one strong cation-exchange (SCX) capillary chromatographic column was used as the first separation dimension and 10 parallel reversed-phase liquid chromatographic (RPLC) capillary columns were used as the second separation dimension. A novel multi-channel interface was designed and fabricated for on-line coupling of the SCX to RPLC column array system. Besides the high resolution based on the combination of SCX and RPLC separation, the developed new system provided the most rapid two-dimensional liquid chromatography (2D-LC) separation. Ten three-way micro-splitter valves used as stop-and-flow switches in transferring SCX fractions onto RPLC columns. In addition, the three-way valves also acted as mixing chambers of RPLC effluent with matrix. The system enables on-line mixing of the LC array effluents with matrix solution during the elution and directly depositing the analyte/matrix mixtures on MALDI plates from the tenplexed channels in parallel through an array of capillary tips. With the novel system, thousands of peptides were well separated and deposited on MALDI plates only in 150min for a complex proteome sample. Compared with common 2D-LC system, the parallel 2D-LC system showed about 10-times faster analytical procedure. In combination with a high throughput tandem time of flight mass spectrometry, the system was proven to be very effective for proteome analysis by analyzing a complicated sample, soluble proteins extracted from a liver cancer tissue, in which over 1202 proteins were identified.  相似文献   

4.
A dual-purpose sample-trapping column is introduced for the capacity enhancement of proteome analysis in on-line two-dimensional nanoflow liquid chromatography (strong cation-exchange chromatography followed by reversed-phase liquid chromatography) and tandem mass spectrometry. A home-made dual trap is prepared by sequentially packing C18 reversed-phase (RP) particles and SCX resin in a silica capillary tubing (1.5 cm x 200 microm I.D. for SCX, 0.7 cm x 200 microm for RP) ended with a home-made frit and is connected to a nanoflow column having a pulled tip treated with an end frit. Without having a separate fraction collection and concentration process, digested peptide mixtures were loaded directly in the SCX part of the dual trap, and the SCX separation of peptides was performed with a salt step elution initiated by injecting only 8 microL of NH4HCO3 solution from the autosampler to the dual trap. The fractionated peptides at each salt step were directly transferred to the RP trap packed right next to the SCX part for desalting, and a nanoflow LC-MS-MS run was followed. During the sample loading-SCX fractionation-desalting, flow direction was set to bypass the analytical column to prevent contamination. The entire 2D-LC separation and MS-MS analysis were automated. Evaluation of the technique was made with an injection of 15 microg peptide mixtures from human Jurkat T-cell proteome, and the total seven salt step cycles followed by each RPLC run resulted in an identification of 681 proteins.  相似文献   

5.
Kim KH  Lee JY  Moon MH 《The Analyst》2011,136(2):388-392
Effects of protein denaturation and formation of protein-sodium dodecyl sulfate (SDS) complexes on protein separation and identification were investigated using hollow fiber flow field-flow fractionation (HF5) and nanoflow liquid chromatography-electrospray ionization-tandem mass spectrometry (nLC-ESI-MS-MS). Denaturation and formation of protein-SDS complexes prior to HF5 separation resulted an increase in the retention of few protein standards due to unfolding of the protein structures and complexation, yielding ~30% increase in hydrodynamic diameter. In addition, low molecular weight proteins which could be lost from the HF membrane due to the pore size limitation showed an increase of peak recovery about 2-6 folds for cytochrome C and carbonic anhydrase. In the case of proteins composed of a number of subunits, denaturation resulted in a decrease in retention due to dissociation of protein subunits. A serum proteome sample, denatured with dithiothreitol and SDS, was fractionated by HF5, and the eluting protein fractions after tryptic digestion were analyzed for protein identification using nLC-ESI-MS-MS. The resulting pools of identified proteins were found to depend on whether the serum sample was treated with or without denaturation prior to the HF5 run due to differences in the aqueous solubility of the proteins. The enhancement of protein solubility by SDS also increased the number of identified membrane proteins (54 vs. 31).  相似文献   

6.
A peptide targeting method has been developed for diagnostic protein discovery, which combines proteolytic digestion of fractionated plasma proteins and liquid chromatography coupled to electrospray time-of-flight mass spectrometry (LC/ESI-TOFMS) profiling. Proteolysis prior to profiling overcomes molecular weight limitations and compensates for the poor sensitivity of matrix-assisted laser desorption/ionization (MALDI) protein profiling. LC/MS increases the peak capacity compared to crude fractionation techniques or single sample MALDI analysis. Differentially expressed peptides are targeted in the mass chromatograms using bioinformatic techniques and subsequently sequenced with MALDI tandem MS. In a model study comparing pancreatic cancer patients to controls, 74% of the peptide targets were successfully sequenced. This profiling method was superior to previous experiments using single sample MALDI analysis for protein profiling or proteolytic peptide profiling, because more potential protein markers were identified.  相似文献   

7.
A multimodal workflow for mass spectrometry imaging was developed that combines MALDI imaging with protein identification and quantification by liquid chromatography tandem mass spectrometry (LC‐MS/MS). Thin tissue sections were analyzed by MALDI imaging, and the regions of interest (ROI) were identified using a smoothing and edge detection procedure. A midinfrared laser at 3‐μm wavelength was used to remove the ROI from the brain tissue section after MALDI mass spectrometry imaging (MALDI MSI). The captured material was processed using a single‐pot solid‐phase‐enhanced sample preparation (SP3) method and analyzed by LC‐MS/MS using ion mobility (IM) enhanced data independent acquisition (DIA) to identify and quantify proteins; more than 600 proteins were identified. Using a modified database that included isoform and the post‐translational modifications chain, loss of the initial methionine, and acetylation, 14 MALDI MSI peaks were identified. Comparison of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of the identified proteins was achieved through an evolutionary relationships classification system.  相似文献   

8.
Peptide mass fingerprinting by matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry (MS) is one of the standard high-throughput methods for protein identification today. Traditionally this method has been based on spotting peptide mixtures onto MALDI targets. While this method works well for more abundant proteins, low-abundance proteins mixed with high-abundance proteins tend to go undetected due to ion suppression effects, instrumental dynamic range limitations and chemical noise interference. We present an alternative approach where liquid chromatography (LC) effluent is continuously collected as linear tracks on a MALDI target. In this manner the chromatographic separation is spatially preserved on the target, which enables generation of off-line LC-MS and LC-MS/MS data by MALDI. LC-MALDI sample collection provides improved sensitivity and dynamic range, spatial resolution of peptides along the sample track, and permits peptide mass mapping of low-abundance proteins in mixtures containing high-abundance proteins. In this work, standard and ribosomal protein digests are resolved and captured using LC-MALDI sample collection and analyzed by MALDI-TOF-MS.  相似文献   

9.
丁芳芳  朱珏  郭睿  张博 《色谱》2019,37(2):132-142
高效微纳液相分离技术如纳流液相色谱、毛细管电泳、微芯片色谱/电泳等与电感耦合等离子体质谱(ICP-MS)检测技术联用,既具有前端分离技术高选择性、高灵敏度、快速、低样品消耗的特点,又结合了后端ICP-MS检测分辨率高、动态范围宽、可绝对定量等优势,正在发展成为一种重要的高内涵联用分析手段。该文对近年来纳流液相分离与ICP-MS联用装置的发展作一系统介绍,对其在化学与生物化学分析等领域的应用予以综述,并展望了该联用技术的发展前景。  相似文献   

10.
Kang D  Oh S  Reschiglian P  Moon MH 《The Analyst》2008,133(4):505-515
Flow field-flow fractionation (FlFFF) has been utilized for size-based separation of rat liver mitochondria. Collected fractions of mitochondria of various sizes were examined by confocal microscopy, and mitochondria of each fraction were lysed and analyzed by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) for the comparison of protein patterns in differently sized mitochondria by densitometric measurements, and for protein characterization of some gel spots with nanoflow liquid chromatography-electrospray ionization-tandem mass spectrometry (nLC-ESI-MS-MS). FlFFF fractions of the mitochondria were also tryptically digested for shotgun proteomic characterization of mitochondrial proteins/peptides by nLC-ESI-MS-MS. Peak area (integrated ion counts) of some peptides extracted from LC-MS chromatograms were examined at different fractions for the quantitative comparison. Among 130 proteins, 105 unique proteins were found to be mitochodrial from the off-line combination of FlFFF and nLC-ESI-MS-MS analysis. It also showed that 23 proteins were found in all fractions but some proteins were found exclusively in certain fractions. Among 25 proteins listed from other subcellular species, seven proteins were known to exist in mitochondria as well as in other subcellular locations, which may support the possible translocation or multiple localizations of proteins among organelles. This study demonstrated effective use of FlFFF for the isolation and/or enrichment of intact mitochondria isolated from cells, as well as its potential use for the fractionation of other subcellular components in the framework of subcellular functional proteomics.  相似文献   

11.
Elijah N.MCCOOL  孙良亮 《色谱》2019,37(8):878-886
自顶向下蛋白质组学的一个重要难题是缺乏与质谱可以在线连用并且可以提供高效蛋白质分离的液相分离技术。毛细管区带电泳与纳升反相色谱都可以与质谱在线连用,并且在复杂蛋白质样品分析方面也都有了显著的提升。在这里,我们首次比较了先进的纳升反相色谱-串联质谱与毛细管区带电泳-串联质谱平台用于自顶向下蛋白质组学分析。相对于纳升反相色谱-质谱而言,毛细管区带电泳-质谱可以将标准蛋白质样品的消耗量降低10倍,而且保持与纳升反相色谱-质谱相当的蛋白质信号强度。有意思的是,与毛细管区带电泳-质谱相比,纳升反相色谱-质谱可以获得更高的蛋白质分子的气相价态。这个现象可能是由于反相流动相中的高浓度乙腈使得蛋白质变性的更加充分。从1微克的大肠杆菌蛋白质样品中,毛细管区带电泳-串联质谱可以鉴定到159个蛋白质和513个蛋白质变体,而纳升反相色谱-串联质谱仅鉴定到105个蛋白质和277个蛋白质变体。当将大肠杆菌蛋白质的上样量提高到8微克时,纳升反相色谱-串联质谱可以鉴定到245个蛋白质和1004个蛋白质变体。由于纳升反相色谱-串联质谱具有比毛细管区带电泳-串联质谱更高的上样量与更宽的分离窗口,当蛋白质样品量不受限制时,纳升反相色谱-串联质谱具有明显的优势。但是,在痕量样品分析方面,毛细管区带电泳-串联质谱具有更大的潜力。  相似文献   

12.
For highly complex mixtures, coelution is a common phenomenon in chromatography. A great deal of resolution is hidden in coelution, and lost due to inevitable molecular diffusion during sample transfer. The molecular diffusion may lead to band broadening and remix of separated peaks, which cause degradation of achievable resolution. In this study, we introduced droplet microfluidics as a high performance sample transfer tool in two dimensional nanoflow liquid chromatography–capillary electrophoresis separation of a human urine sample. The fine fractionation capability and sampling completeness enabled by the droplet-interface demonstrated the 2D system’s usefulness in high-resolution mapping of real world biological samples.  相似文献   

13.
High-resolution liquid chromatography separation is essential to in-depth proteomic profiling of complex biological samples. Herein, we established an ion-pair reversed-phase×reversed-phase two-dimensional liquid chromatography (IPRP×RP 2DLC) strategy for comprehensive proteomic analysis. Both RPLC separation dimensions were performed at low pH, with trifluoroacetic acid(TFA) and formic acid(FA) as mobile phase addictive, respectively. As the good separation resolution offered by ion-pairing effect of TFA, the fractionation efficiency was greatly improved with 74.0% peptides identified in just one fraction. Comparing with conventional high pH RP fractionation, the overall separation rate of IPRP was about 1.6 times that of high-pH RP, which increased the number of identified peptides by 21%. Further, 2169 proteins and 8540 peptides were confidently identified from crude serum sample by our IPRP×RP 2DLC strategy, exhibiting great potential in clinical proteomics in the future.  相似文献   

14.
Gao M  Yu W  Zhang Y  Yan G  Deng C  Yang P  Zhang X 《The Analyst》2008,133(9):1261-1267
We present a comprehensive method for proteome analysis that integrates both intact protein separation and proteolytic fragment characterization mass spectrometric approaches. Strong cation exchange chromatography (SCX) was used as the first separation dimension and capillary reversed-phase liquid chromatography (cRPLC) was integrated as the second separation dimension. Fractions from SCX were collected offline and loaded onto cRPLC. Effluents from cRPLC were directly deposited onto the MALDI target plates and further digested by using a rapid on-probe tryptic digestion technique. This approach minimizes the amount of time and extensive labor required for traditional in-solution digestion followed by exhaustive sample cleanup and transfer. MALDI-TOF/TOF was used for subsequent analyses. The sensitivity of on-target digestion is showed by analyzing 0.07 ng of myoglobin, 0.07 ng of cytochrome c and 0.7 ng BSA. The high efficiency of the overall system was demonstrated by the analysis of intact proteins extracted from normal human liver tissue. In total, 458 proteins were identified, which proved the system's promising potential for analysis and application in proteomics.  相似文献   

15.
We paper describe a mass spectrometric approach generally applicable for the rapid identification and characterization of proteins isolated by two-dimensional gel electrophoresis (2-DE). The highly sensitive nanoflow-electrospray mass spectrometry employing a quadrupole-time of flight mass spectrometer was used for the direct identification of proteins from the peptide mixture generated from only one high resolution 2-DE gel without high performance liquid chromatography (HPLC) separation or Edman sequencing. Due to the high sensitivity and high mass accuracy of the instrument employed, this technique proved to be a powerful tool for the identification of proteins from femtomole amounts of materials. We applied the technique for the investigation of Burkitt lymphoma BL60 cell proteins. This cell line has been used as a model to assign apoptosis-associated proteins by subtractive analysis of normal and apoptotic cells. From the nuclear fraction of these cells, 36 protein spots were examined, from only one micropreparative Coomassie Brilliant Blue R-250 stained gel, after proteolytic digestion by matrix assisted laser desorption ionization (MALDI) and nanospray mass spectrometry (MS). In combination with database searches, of 33 proteins were successfully identified by nanospray-MS/MS-sequencing of up to eight peptides per protein. Three proteins were new proteins not listed in any of the available databases. Some of the identified proteins are known to be involved in apoptosis processes, the others were common proteins in the eukaryotic cell. The given technique and the protein data are the basis for construction of a database to compare normal and apoptosis-induced cells and, further, to enable fast screening of drug impact in apoptosis-associated processes.  相似文献   

16.
We report an MS‐based workflow for identification of phosphorylated peptides from trypsinized protein mixtures and cell lysates that is suitable for high‐throughput sample analysis. The workflow is based on an in situ enrichment on matrix‐assisted laser desorption/ionization (MALDI) plates that were functionalized by TiO2 using automated ion landing apparatus that can operate unsupervised. The MALDI plate can be functionalized by TiO2 into any array of predefined geometry (here, 96 positions for samples and 24 for mass calibration standards) made compatible with a standard MALDI spotter and coupled with high‐performance liquid chromatography. The in situ MALDI plate enrichment was compared with a standard precolumn‐based separation and achieved comparable or better results than the standard method. The performance of this new workflow was demonstrated on a model mixture of proteins as well as on Jurkat cells lysates. The method showed improved signal‐to‐noise ratio in a single MS spectrum, which resulted in better identification by MS/MS and a subsequent database search. Using the workflow, we also found specific phosphorylations in Jurkat cells that were nonspecifically activated by phorbol 12‐myristate 13‐acetate. These phosphorylations concerned the mitogen‐activated protein kinase/extracellular signal‐regulated kinase signaling pathway and its targets and were in agreement with the current knowledge of this signaling cascade. Control sample of non‐activated cells was devoid of these phosphorylations. Overall, the presented analytical workflow is able to detect dynamic phosphorylation events in minimally processed mammalian cells while using only a short high‐performance liquid chromatography gradient. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Derivatization of tryptic peptides using an Ettan CAF matrix-assisted laser desorption/ionization (MALDI) sequencing kit in combination with MALDI-post source decay (PSD) is a fast, accurate and convenient way to obtain de novo or confirmative peptide sequencing data. CAF (chemically assisted fragmentation) is based on solid-phase derivatization using a new class of water stable sulfonation agents, which strongly improves PSD analysis and simplifies the interpretation of acquired spectra. The derivatization is performed on solid supports, ZipTip(microC18, limiting the maximum peptide amount to 5 microg. By performing the derivatization in solution enabled the labeling of tryptic peptides derived from 100 microg of protein. To increase the number of peptides that could be sequenced, derivatized peptides were purified using multidimensional liquid chromatography (MDLC) prior to MALDI sequencing. Following the first dimension strong cation exchange (SCX) chromatography step, modified peptides were separated using reversed-phase chromatography (RPC). During the SCX clean up step, positively charged peptides are retained on the column while properly CAF-derivatized peptides (uncharged) are not. A moderately complex tryptic digest, prepared from six different proteins of equimolar amounts, was CAF-derivatized and purified by MDLC. Fractions from the second dimension nano RPC step were automatically sampled and on-line dispensed to MALDI sample plates and analyzed using MALDI mass spectrometry fragmentation techniques. All proteins in the derivatized protein mixture digest were readily identified using MALDI-PSD or MALDI tandem mass spectrometry (MS/MS). More than 40 peptides were unambiguously sequenced, representing a seven-fold increase in the number of sequenced peptides in comparison to when the CAF-derivatized protein mix digest was analyzed directly (no MDLC-separation) using MALDI-PSD. In conclusion, MDLC purification of CAF-derivatized peptides significantly increases the success rate for de novo and confirmative sequencing using various MALDI fragmentation techniques. This new approach is not only applicable to single protein digests but also to more complex digests and could, thus, be an alternative to electrospray ionization MS/MS for peptide sequencing.  相似文献   

18.
A new method for quantitative analysis of several biomarkers and pharmaceutical compounds in wastewater has been developed employing nanoflow liquid chromatography with Orbitrap mass spectrometry. An easy dilute-and-shoot approach has been used for sample preparation with a dilution factor of 5. Improved retention of ionic and highly polar compounds has been achieved by the addition of tetrabutylammonium bromide as an ion pair reagent into the final diluted sample. The new nanoflow liquid chromatography method has demonstrated low matrix effects (70%–111%), high sensitivity in terms of limits of quantification (0.005 to 0.3 μg/L), low injection volume (70 nl) and solvent consumption, and the ability to analyze diverse polar and ionic analytes within one run using a single reversed-phase nanoflow liquid chromatography column. Wastewater samples (n = 116) from the wastewater treatment plants of different cities in Latvia were analyzed using the developed method. The observed concentrations of biomarkers were in line with the literature data.  相似文献   

19.
Identification of the serum proteome is a daunting analytical task due to the complex nature of the sample which has an extremely large dynamic range of protein components. This report addresses this issue by using centrifugal ultrafiltration to enrich the low-molecular-weight (LMW) serum proteome while decreasing the amount of abundant high-molecular-weight proteins. Reduction of the complex nature of the sample was achieved by fractionation of the LMW serum proteins using solution-phase isoelectric focusing (IEF). Multiple enzyme digestions are performed and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Analysis of the tandem mass spectra resulted in the identification of 262 proteins belonging to LMW serum proteome. Our results demonstrate the effectiveness of this methodology to isolate and identify LMW proteins with improved confidence in the MS data acquired. In addition, our methodology can be combined with other multidimensional chromatography techniques performed on the peptide level to increase the number of identified proteins.  相似文献   

20.
For fractionation of intact proteins by molecular weight (MW), a sharply improved two-dimensional (2D) separation is presented to drive reproducible and robust fractionation before top-down mass spectrometry of complex mixtures. The “GELFrEE” (i.e., gel-eluted liquid fraction entrapment electrophoresis) approach is implemented by use of Tris-glycine and Tris-tricine gel systems applied to human cytosolic and nuclear extracts from HeLa S3 cells, to achieve a MW-based fractionation of proteins from 5 to >100 kDa in 1 h. For top-down tandem mass spectroscopy (MS/MS) of the low-mass proteome (5–25 kDa), between 5 and 8 gel-elution (GE) fractions are sampled by nanocapillary-LC-MS/MS with 12 or 14.5 tesla Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometers. Single injections give about 40 detectable proteins, about half of which yield automated ProSight identifications. Reproducibility metrics of the system are presented, along with comparative analysis of protein targets in mitotic versus asynchronous cells. We forward this basic 2D approach to facilitate wider implementation of top-down mass spectrometry and a variety of other protein separation and/or characterization approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号