首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 344 毫秒
1.
Radical products of radiolysis of frozen solutions of propionic and butyric acids were studied in the matrices of Freon-11, Freon-113, and Freon-113a at 77 K. It was shown that the primary radical cations generated by radiation were not trapped in the freonic matrices (in contrast with the corresponding freonic solutions of acetic acid). The radical cations of propionic and butyric acids decay in concurrent processes of rearrangements yielding terminal-type and ylide-type distonic radical cations and intramolecular proton transfer in the dimeric radical cations resulting in acyloxy radicals. The latter species undergo decarboxylation to yield ethyl and propyl radicals for propionic and butyric acids, respectively. According to mass-spectrometric data, the terminal-type distonic radical cations undergo the McLafferty rearrangement.Translated from Khimiya Vysokikh Energii, Vol. 39, No. 2, 2005, pp. 97–104.Original Russian Text Copyright © 2005 by Belevskii, Belopushkin.This revised version was published online in April 2005 with a corrected cover date.  相似文献   

2.
It has been established that, upon X-ray irradiation of various methyloxiranes in freonic matrices at 77 K, both open and cyclic (with the elongated C-C bond) forms of radical cations are stabilized. It has been shown that observed reversible photoinduced transformations of 2,3-dimethyloxirane and methyloxirane radical cations are related to the conversion between the open and cyclic forms of the radical cations with high quantum yields (0.02?C0.39, depending on the oxirane and the matrix). For the trimethyloxirane radical cation the action of light on the trans-isomer of the open form results in its photoinduced transformation into a C-centered radical with low quantum efficiency (??4 × 10?3). Tetramethyloxirane radical cations, stabilized in their open form, are resistant to the action of light. Probable causes of the observed effects are discussed. Upon the X-ray irradiation of 2,2-dimethyloxirane in freonic matrices at 77 K, a cyclic form of the radical cation is stabilized (presumably, as part of a complex with matrix molecules) which transforms into a distonic C-centered radical cation under the action of light with the quantum yield of ??10?3.  相似文献   

3.
Two different conformers of ethylbenzene radical cations (or a mixture of both conformers) can be stabilized in various freonic matrices. The first conformer retains the geometry of the parent molecule, whereas the second one corresponds to minimum energy. It was shown that the photochemical reactions of the radical cations in various freons at 77 K were not accompanied by a change in their conformational state. The spectral characteristics of ethylbenzene radical cations and the quantum yields of photoinduced charge transfer reactions were determined. The reasons for stabilization of different conformers of the radical cations in different freonic matrices are discussed.  相似文献   

4.
It has been established that reversible photoinduced transformations of 2,3-dimethyloxirane and methyloxirane radical cations (RCs), observed in freonic matrices at 77 K, are related to the conversion between the open and cyclic forms of the RCs. For the trimethyloxirane RC the action of light on the trans-isomer of the open form results in its photoinduced transformation into a C-centered radical with low quantum efficiency (≈4 × 10−3). Upon the X-ray irradiation of 2,2-dimethyloxirane in freonic matrices at 77 K, a cyclic form of the RC is stabilized (presumably, as part of a complex with matrix molecules) which transforms into a distonic C-centered RC under the action of light with the quantum yield of ≈10−3. Tetramethyloxirane RC, stabilized in its open form, is resistant to the action of light. Probable causes of the observed effects are discussed.  相似文献   

5.
It has been established that transformations of azetidine radical cations observed in freonic matrices under the action of light with λ = 436 nm (T = 77 K) are associated with C-N bond cleavage which corresponds to the cyclic form yielding a mixture of open distonic C-centered radical cations of the following structure: ·CH2CH2CH=NH 2 +   相似文献   

6.
It was shown that trimethylene oxide (oxetane) radical cations were converted at 77 K into either distonic radical cations ·CH2CH2CH=OH+ or 2-oxetanyl radicals, depending on the freonic matrix used, by the action of light at λ = 546 nm and trimethylene sulfide radical cations transformed into distonic radical cations CH2CHSH+CH 2 · under 436-nm irradiation. The quantum yields of the photochemical reactions were determined. Quantum-chemical calculations on the structure and HFC constants of the radical cations and possible paramagnetic products of their transformation were performed. The reasons behind the observed difference in reactivity between the radical cations under the action of light are discussed.  相似文献   

7.
Structure and mechanism of thermal and photochemical reactions of radical cations of methyl n-propyl ether (MPE) were studied in irradiated freonic matrices CFCl3, CF2ClCFCl2, and CF3CCl3 at 77 K. The quantum chemical calculations of the structure of radical cations and products of their transformations were carried out with methods based on the density functional theory (DFT). Experimental and calculation results show that the MPE radical cations are characterized by substantial delocalization of spin density to the propyl group. The action of light on the MPE radical cations in a CF3CCl3 matrix at 77 K results in intramolecular rearrangement yielding the distonic radical cation .CH2CH2CH2(OH+)CH3. It was found that the primary MPE radical cations underwent irreversible transformation to CH3CH2CH2OCH 2 . radical as a result of an ion-molecule reaction that occurred in a CF2ClCFCl2 matrix upon heating the sample to 110–120 K or in a CFCl3 matrix upon increasing the solute concentration.Translated from Khimiya Vysokikh Energii, Vol. 39, No. 2, 2005, pp. 105–113.Original Russian Text Copyright © 2005 by Belevskii, Feldman, Tyurin.This revised version was published online in April 2005 with a corrected cover date.  相似文献   

8.
The radical reactions of linear and cyclic dimethylsiloxanes were studied. It was found that methyl radicals decayed in linear and branched polymethylsiloxanes and dimethylsilanediol at 77 K as a result of radical center transfer. It was established that distonic radical cations were formed and the siloxane ring was opened in cyclic siloxanes D3 and D4 upon irradiation in the bulk at 77 K.  相似文献   

9.
Radical cations of various 3-methylalkanes (C6-C14) have been produced and stabilized by γ-irradiation of the corresponding neutral compounds in saturated chloroflourocarbon (1,1-diflourotetra-chloroethane and 1,1,2-trichlorotriflouroethane) and perflourocarbon (perflourohexane and perfluoro-methylcyclohexane) matrices at 77 K. The perfluorocarbon matrices appeared more suitable for studies of the lighter radical cations, whereas the chlorofluorocarbon matrices were more suited for studies of the heavier radical cations; intermediary cations could be studied in both types of matrices. After irradiation, electronic absorptions associated with both the matrix and the alkane additive were observed. Pure spectra of the 3-methylalkane radical cations were obtained by difference spectrometry, after selective elimination of these cations by illumination. The electronic absorption spectra of the 3-methylalkane radical cations consist in all cases of a single broad absorption band. The spectral position of this band shifts to longer wavelengths with increasing chain length; the maximum of the absorption band was found to be situated at 490 nm for 3-methylpentane radical cations and at 940 nm for 3-methyltridecane radical cations. The results are most interesting because they give direct information on the electronic absorption of 3-methylpentane radical cations. It was found that the molar extinction coefficients of these cations are not very much smaller than those of other 3-methylalkane radical cations and thus must be of the order of 103dm3·mol-1·cm-1. From this it is deduced that the majority of positive ions trapped in irradiated pure 3-methylpentane glasses at 77 K are not parent cations.  相似文献   

10.
Two series of enol ether radical cations were studied by laser flash photolysis methods. The radical cations were produced by heterolyses of the phosphate groups from the corresponding alpha-methoxy-beta-diethylphosphatoxy or beta-diphenylphosphatoxy radicals that were produced by 355 nm photolysis of N-hydroxypryidine-2-thione (PTOC) ester radical precursors. Syntheses of the radical precursors are described. Cyclizations of enol ether radical cations 1 gave distonic radical cations containing the diphenylalkyl radical, whereas cyclizations of enol ether radical cations 2 gave distonic radical cation products containing a diphenylcyclopropylcarbinyl radical moiety that rapidly ring-opened to a diphenylalkyl radical product. For 5-exo cyclizations, the heterolysis reactions were rate limiting, whereas for 6-exo and 7-exo cyclizations, the heterolyses were fast and the cyclizations were rate limiting. Rate constants were measured in acetonitrile and in acetonitrile solutions containing 2,2,2-trifluoroethanol, and several Arrhenius functions were determined. The heterolysis reactions showed a strong solvent polarity effect, whereas the cyclization reactions that gave distonic radical cation products did not. Recombination reactions or deprotonations of the radical cation within the first-formed ion pair compete with diffusive escape of the ions, and the yields of distonic radical cation products were a function of solvent polarity and increased in more polar solvent mixtures. The 5-exo cyclizations were fast enough to compete efficiently with other reactions within the ion pair (k approximately 2 x 10(9) s(-1) at 20 degrees C). The 6-exo cyclization reactions of the enol ether radical cations are 100 times faster (radical cations 1) and 10 000 times faster (radical cations 2) than cyclizations of the corresponding radicals (k approximately 4 x 10(7) s(-1) at 20 degrees C). Second-order rate constants were determined for reactions of one enol ether radical cation with water and with methanol; the rate constants at ambient temperature are 1.1 x 10(6) and 1.4 x 10(6) M(-1) s(-1), respectively.  相似文献   

11.
The process of positive hole transfer between alkylbenzene molecules of various structures occurring upon irradiation in electron-scavenging (freonic) matrices at 77 K was studied by ESR. The factors controlling the efficiency and direction of this process were analyzed. In the case of the ethylbenzene–toluene pair, it was shown that the direction of hole transfer depends on the conformation of the ethylbenzene radical cation. If the conformation effects are absent, the hole transfer occurs in accordance with the gas-phase ionization potentials (IP) and appears to be efficient, provided that the difference in the IP values is greater than 0.3 eV.  相似文献   

12.
The efficiency of photochemical reactions of radical cations of cyclic acetals (1,3-dioxolane, 1,3-dioxane) is measured in different Freon matrices at 77 K and the influence of the latter on the reaction path is discovered. The possible nature of the paramagnetic complexes that form in photochemical reactions of cyclic acetal radical cations in Freon-11 is suggested.  相似文献   

13.
Using low-temperature EPR the transformations of radical cations of aliphatic vinyl ethers radiolytically generated in a Freon matrix have been investigated. Three-line spectra found at 77 K [hfs constants of 1.5 mT (1H) and 2.2 mT (1H)] and at 95 K [1.9–2.1 mT (2H)] were attributed to the radical cation. A quartet was observed at 130 K, usually with binomial intensities [hfs constants of 1.3 mT (3H)] and a triplet [1.7–1.9 mT (2H)] was found after cooling samples back to 95 K. The conversion of the quartet to the triplet was found to be thermally reversible and both spectra are assigned to different states of a (distonic) dimer cation.  相似文献   

14.
A four-step mechanism of isomerization of tricyclo[4.3.0.03,7]nona-4,8-diene radical cations to tricyclo[4.2.1.04,9]nona-2,7-diene radical cations in γ-irradiated frozen Freon-113 (CFCl2CF2Cl) matrix was suggested on the basis of ESR data. The rearrangement was found to occur via distonic form of the radical cations with spin and charge separation. Furthermore, it was shown that the primary radical cations abstracts hydrogen atom from methylene group of the parent molecule, whereas distonic radical cations reacts via attachment to the C=C bond at 110–119 K.  相似文献   

15.
The formation of radicals during the liquid-phase radiolysis of ethylamine, diethylamine, and triethylamine was studied by means of the spin trapping technique. The radicals produced in ion-molecule reactions and in the rearrangement and fragmentation reactions of the primary radical cations of the amines were identified. The structure and reactions of the primary radical cations were studied in a low-temperature CFCl3 freonic matrix in which amine radical cations were generated via charge transfer from matrix radical cations to amines during freon irradiation. The results of experiments in the liquid and solid phases are consistent with one another. The structure of neutral radicals and radical cations of the ethylamines was corroborated by quantum-chemical calculations.  相似文献   

16.
Fast atom bombardment promotes condensation between trimethyl tetradecyl ammonium cations and the glycerol matrix. Bond formation at both the head and tail of the surfactant is demonstrated by low energy collision-induced dissociation (ClD) of deuterium-labeled precursors, with a preponderance of the reaction apparently occurring at the tail. Two distinct ClD pathways are identified for each kind of adduct (head- and tail-attack). Evidence is presented for the detection of distonic radical cations of the surfactant, complexed (solvated) with glycerol.  相似文献   

17.
《Tetrahedron》1986,42(22):6315-6323
The σ radical cations of most typical bicycloalkanes such as norbornane and bicyclo[2,2,2]octane are radiolytically produced at 4 K in halogenocarbon matrices and are studied by ESR spectroscopy. Their electronic and geometrical structures as well as their dynamical behaviors have been elucidated from the hyperfine structures and their temperature changes. The semi occupied molecular orbital (SOMO) of the former cation is 4a2, in which the unpaired electron delocalizes over the four exo C-H bonds giving large hyperfine coupling. The latter is a Jahn-Teller active species and exhibits static distortion from D3h to C2v at 4 K in CFCl3, and the SOMO is likely to be 6b2, in which the unpaired electron delocalizes over the four endo C-H bonds giving large proton coupling, although a dynamically averaged structure with 12 equivalent methylene protons is observed in C-C6F12 as well as in CFCl2CF2Cl matrices at 77 K. The unpaired electron distribution in bicycloalkane radical cations is similar to that in cycloalkane radical cations previously studied. Upon warming both the cations undergo deprotonation to give 2-yl alkyl radicals from the exo or endo C-H bond, at which the higher unpaired electron density is populated. In addition to these radical cations, the structures and reactions of the radical cations of the related bicycloalkenes such as norbornadiene, quadricyclane, and bicyclo[2,2,2]octene have also been studied. The hydride ion transfer to an olefinic radical cation to form an alkyl radical is observed for the bicyclo[2,2,2]octene radical cation as the first example observed by ESR.  相似文献   

18.
In this work, we regiospecifically generate and compare the gas-phase properties of two isomeric forms of tryptophan radical cations—a distonic indolyl N-radical (H3N+ - TrpN?) and a canonical aromatic π (Trp?+) radical cation. The distonic radical cation was generated by nitrosylating the indole nitrogen of tryptophan in solution followed by collision-induced dissociation (CID) of the resulting protonated N-nitroso tryptophan. The π-radical cation was produced via CID of the ternary [CuII(terpy)(Trp)] ?2+ complex. CID spectra of the two isomeric species were found to be very different, suggesting no interconversion between the isomers. In gas-phase ion-molecule reactions, the distonic radical cation was unreactive towards n-propylsulfide, whereas the π radical cation reacted by hydrogen atom abstraction. DFT calculations revealed that the distonic indolyl radical cation is about 82 kJ/mol higher in energy than the π radical cation of tryptophan. The low reactivity of the distonic nitrogen radical cation was explained by spin delocalization of the radical over the aromatic ring and the remote, localized charge (at the amino nitrogen). The lack of interconversion between the isomers under both trapping and CID conditions was explained by the high rearrangement barrier of ca.137 kJ/mol. Finally, the two isomers were characterized by infrared multiple-photon dissociation (IRMPD) spectroscopy in the ~1000–1800 cm–1 region. It was found that some of the main experimental IR features overlap between the two species, making their distinction by IRMPD spectroscopy in this region problematic. In addition, DFT theoretical calculations showed that the IR spectra are strongly conformation-dependent.   相似文献   

19.
Optical absorption bands observable in Freon 11, Freon 113, and Freon 113a irradiated at 77 K were assigned to various intermediates (radical cations, radical ion pairs, and complexes of radicals with ions). The transformations of these species in thermal and photochemical reactions occurring at 77 K were studied. On the basis of experimental results, it was suggested that the radical anions of Freon 11 and Freon 113 are unstable at 77 K and the spatial distribution of the intermediates produced is inhomogeneous.  相似文献   

20.
The radical cations of linear alkanes (n-pentane, n-heptane) trapped in various matrices (Freon-11, Freon-113, Freon-113a, mixture of Freon-11 and Freon-114B2, and sulfur hexafluoride) were found to undergo the following types of photochemical reactions: (1) charge transfer to the matrix followed by neutralization, (2) isomerization and unimolecular decomposition, and (3) deprotonation. The absorption spectra of the radical cations were characterized, and the quantum yields of reactions occurring in different matrices at 77 K were determined. It was shown that the reaction pathway and efficiency of the photochemical processes observed for a given radical cation in different matrices with similar physical and chemical characteristics could considerably differ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号