首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The magnetic properties and microstructure of electrodeposited Ni–W thin films (0–11.7 at% W in composition) were studied. The film structures were divided into three regions: an FCC nanocrystalline phase (0–2 at% W), a transition region from FCC nanocrystalline to amorphous phase (2–7 at% W), and an amorphous phase (>7 at% W). In the transition region, (4–5 at% W) films with perpendicular magnetic anisotropy (PMA) were found. The saturation magnetization, magnetic anisotropy field, perpendicular magnetic anisotropy and perpendicular coercivity for a typical Ni–W film (4.5 at% W) were 420 kA/m, 451 kA/m, 230 kJ/m and 113 kA/m, respectively. The microstructure of Ni–W films with PMA is composed of isolated columnar crystalline grains (27–36 nm) with the FCC phase surrounded by the Ni–W amorphous phase. The appearance of the interface between the magnetic core of Ni crystalline grains and the Ni–W non-magnetic boundary layer seems to be the driving mechanism for the appearance of PMA. The origin of PMA in Ni–W films is mainly attributed to the magnetoelastic anisotropy associated with in-plane internal stress and positive magnetostriction. The secondary source of PMA is believed to be the magnetocrystalline anisotropy of 〈1 1 1〉 columnar grains and its shape magnetic anisotropy. It is concluded that Ni–W electrodeposited films (4–5 at% W) may be applicable for perpendicular magnetic recording media.  相似文献   

2.
We recently reported a possible antiferromagnetically coupled phase in a Co-rich CoFeSiB thin film, that had a partially nanocrystalline Co phase in an amorphous CoFeSiB matrix. Although an amorphous CoFeSiB film should show a ferromagnetic behavior, we observed an antiferromagnetic coupling associated with a nanocrystalline Co phase in the hysteresis-loop measurements of Co-rich CoFeSiB thin films. We ascribed the observed antiferromagnetic coupling to dense stripe domains consisting of periodically up and down domains perpendicular to the surface of the film. The configuration of the stripe domains was confirmed with magnetic force microscopy images. When a longitudinal magnetic field was applied, the size of the stripe domain was reduced. While for a transverse field, the domain structure became tilted and zigzagged, but no in-plane magnetic anisotropy was noted. When the magnetic field was increased to values above the saturation magnetic field, HS = 2.5 kOe, the domain structure disappeared.  相似文献   

3.
The article reviews and updates the understanding of the soft magnetic properties of nanocrystalline Fe-based alloys. In optimized compositions the random magneto-crystalline anisotropy of the structural phases is largely averaged out. The soft magnetic properties are then controlled by magneto-elastic and induced anisotropies which are uniform on a scale much larger than the exchange length. But unlike to the case of soft magnetic amorphous alloys, there is still a competition between the random and the more uniform anisotropy contributions. The experimental findings are complemented by theoretical results.  相似文献   

4.
The magnetic properties of amorphous and nanocrystalline hard magnetic materials are summarized. The reduction of the “effective” anisotropy field due to exchange coupling in nanocrystalline materials is demonstrated. This leads experimentally as well as theoretically to a remanence enhancement and to a reduced coercivity. Also the domain structure shows the effect of exchange coupling. Nd–Fe–Al is taken as an example of a new “amorphous” hard magnetic material. For magnetostrictive materials the possibility of reducing the anisotropy in nanocrystalline samples without loosening the high magnetostriction is discussed.  相似文献   

5.
Inverted hysteresis loops were observed for the first time in the near-surface layers of heterogeneous (nanocrystalline/amorphous) Fe81Nb7B12 alloys. In particular, a negative residual magnetization is observed when a positive magnetic field applied in the sample plane is decreased to zero. The inverted hysteresis is qualitatively explained within the framework of a two-phase model, according to which the heterogeneous alloys contain two dissimilar phases exhibiting uniaxial magnetic anisotropy and featuring antiferromagnetic exchange interaction.  相似文献   

6.
We observed how perpendicular magnetic anisotropy, present in electrodeposited amorphous Co-P alloys, changes during heat treatment in the presence or absence of a magnetic field. The results show that, apart from “columnar” shape anisotropy, there are other mechanisms of anisotropy present in the samples, first a stress anisotropy which can reach a value close to that reached by shape anisotropy and second directional-order anisotropy of smaller magnitude than that due to stress. The latter only occurs when the sample is heated to over 140°C.  相似文献   

7.
The induced anisotropy in amorphous (Co93Zr7)100−x(RE)x films has been studied. The sputter deposition was performed in a magnetic field. For RE = Nd, Pr, Dy and Tb, the formation of a well-defined in-plane uniaxial anisotropy Ku is related to the single-ion anisotropy of RE atoms. When RE = Gd and Sm, a biaxial anisotropy develops, comprising Ku and a perpendicular anisotropy Kp. This magnetic structure is expected to be related to the simultaneous formation of two distinct local structural configurations when the deposition temperature is higher than the critical value.  相似文献   

8.
The interplay of the Rashba effect and the spin Hall effect originating from current induced spin–orbit coupling was investigated in the as-deposited and annealed Pt/Co/MgO stacks with perpendicular magnetic anisotropy. The above two effects were analyzed based on Hall measurements under external magnetic fields longitudinal and vertical to dc current,respectively. The coercive field as a function of dc current in vertical mode with only the Rashba effect involved decreases due to thermal annealing. Meanwhile, spin orbit torques calculated from Hall resistance with only the spin Hall effect involved in the longitudinal mode decrease in the annealed sample. The experimental results prove that the bottom Pt/Co interface rather than the Co/MgO top one plays a more critical role in both Rashba effect and spin Hall effect.  相似文献   

9.
The magnetic texture of (Fe1?x Cox)76Mo8Cu1B15 (x = 0, 0.5) nanocrystalline alloys is studied for different amounts of nanocrystalline grains. The originally amorphous alloys were annealed in external longitudinal and transverse magnetic fields of 0.025 T and 0.8T, respectively. Mössbauer measurements were carried out at room and liquid nitrogen temperatures in order to gain information on the hyperfine interactions and the orientation of the magnetization. The obtained results are compared with those received from zero-field annealed samples. Magneto-optical Kerr effect (MOKE) was applied for the investigation of possible changes at the surface of the x = 0 ribbon as a function of annealing temperature and applied magnetic field. A combination of uniaxial anisotropy, which originates from the shape anisotropy, and four-fold anisotropy, which is a contribution from crystallites of nanometre size embedded in the residual amorphous matrix, is unveiled.  相似文献   

10.
曹成成  范珏雯  朱力  孟洋  王寅岗 《物理学报》2017,66(16):167501-167501
研究了预退火时间对Fe_(80.8)B_(10)P_8Cu_(1.2)非晶合金微结构及磁性能的影响.穆斯堡尔谱研究表明:在660 K的预退火温度下,随着预退火时间的增加,Fe原子不断富集,非晶基体中的类Fe_3B化学短程有序结构向类Fe B结构转变,并且非晶基体中Fe第一近邻壳层中Cu原子的逐渐脱离以及Fe-P配位键数量的明显减少可间接表征CuP团簇的形成过程.同时,本研究通过调节预退火时间来调控非晶基体中CuP团簇和Fe团簇的数量,促进后续退火晶化过程中α-Fe纳米晶相的析出,并细化纳米晶尺寸,从而获得综合磁性能更加优异的非晶/纳米晶软磁合金.  相似文献   

11.
Advances in theory that explain the magnetic behavior as function of temperature for two phase nanocrystalline soft magnetic materials are presented. The theory developed is based on the well known random anisotropy model, which includes the crystalline exchange stiffness and anisotropy energies in both amorphous and crystalline phases. The phenomenological behavior of the coercivity was obtained in the temperature range between the amorphous phase Curie temperature and the crystalline phase one.  相似文献   

12.
The optical properties of amorphous and nanocrystalline tapes of CoFeNiSiB alloys and the ac magnetoresistive effect in them have been investigated. It is shown that the magnetoresistive effect in these alloys increases by about a factor of two after lowtemperature treatment and subsequent laser annealing of these tapes in an external magnetic field. Correlation between the anomalous behavior of the dielectric function of these alloys in the IR region of the spectrum and their magnetoresistive characteristics after thermal annealings has been established. The interrelation between the density of localized electronic states near the Fermi level and the value of the magnetoresistive effect has been revealed. The influence of the induced magnetic anisotropy on the transverse permeability in amorphous and nanocrystalline CoFeNiSiB alloys and, consequently, also on the magnetoresistive effect has been analyzed.  相似文献   

13.
Highly ordered Co0.71Pt0.29 alloy nanowire arrays have been fabricated successfully by direct current electro-deposition into the pores of a porous anodic aluminum oxide (AAO) template. SEM and TEM images reveal that the nanowires of array are uniform, well isolated, and parallel to one another. The aspect ratio of nanowires is over 200. XRD and EDS pattern indicates that amorphous Co0.71Pt0.29 structure was formed during electro-deposition. In amorphous sample, magnetocrystal anisotropy is very small, therefore, shape anisotropy plays a dominant role which leads to strong perpendicular anisotropy. High coercivity (Hc=1.7 kOe) and squareness (Mr/Ms) around 0.7 were obtained in the samples when the field was applied parallel to the axis of the nanowires. However, when it changed to polycrystalline structure after annealing, due to the competition of magnetocrystal anisotropy and shape anisotropy, the sample did not display perpendicular anisotropy.  相似文献   

14.
It has been found that the domain structures of amorphous magnetically soft iron-based ferromagnetic ribbons in an atmosphere of water vapor and methyl alcohol are significantly different. In the former case, several domains separated by domain walls oriented at an angle of 30°–40° to the long side of the sample are observed. In the latter case, two domains separated by one wall located in the middle of the sample in parallel to its long side are observed. In the former case, the normal component of the magnetization on the sample surface has been detected using the polar magnetooptical Kerr effect. In the latter case, the normal component of the magnetization is almost absent. The observed effects are reversible. The normal component of the magnetization is induced by the desorption of water and methyl alcohol molecules, which are absorbed through the mechanism of the formation of hydrogen bonds, from the sample surface. According to the performed estimate, the effective field of the perpendicular magnetic anisotropy reaches a value of 1.6 kA/m.  相似文献   

15.
By Monte Carlo simulations in the canonical ensemble, we have studied the magnetic anisotropy in Fe/Dy amorphous multilayers. This work has been motivated by experimental results which show a clear correlation between the magnetic perpendicular anisotropy and the substrate temperature during elaboration of the samples. Our aim is to relate macroscopic magnetic properties of the multilayers to their structure, more precisely their concentration profile. Our model is based on concentration dependent exchange interactions and spin values, on random magnetic anisotropy and on the existence of locally ordered clusters that leads to a perpendicular magnetisation. Our results evidence that a compensation point occurs in the case of an abrupt concentration profile. Moreover, an increase of the non-collinearity of the atomic moments has been evidenced when the Dy anisotropy constant value grows. We have also shown the existence of inhomogeneous magnetisation profiles along the samples which are related to the concentration profiles.  相似文献   

16.
Electron magnetic resonance (EMR) was studied on crystalline bulk and nanometer-sized samples of the same La0.7Ca0.3MnO3 manganite compound aiming to compare their magnetic homogeneities. The results obtained show that single-crystalline bulk sample is less homogeneous than the nanocrystalline one. Except for higher homogeneity, the nanometer-sized sample also demonstrates a weaker magnetic anisotropy. As a result, well-pronounced coexistence of different magnetic phases (coexistence of ferromagnetic and paramagnetic resonance signals) is observed in the bulk sample, while it is absent in the nanocrystalline one. It is suggested that such strong difference is directly connected to the difference in structural state of the samples.  相似文献   

17.
The crystal structure of Tb30Fe70 and Co50Pd50 nanocrystalline films with strong magnetic anisotropy perpendicular to the film plane (K ~ 106 erg/cm3) is investigated using electron diffraction and transmission electron microscopy. All the studied films in the initial nanocrystalline phase undergo an explosive crystallization with the formation of dendrite structures. It is demonstrated that, after crystallization, the Tb-Fe and Co-Pd films exhibit a tetrahedrally close-packed atomic structure that has no analogs among these materials in the equilibrium state. The internal stresses in the films under investigation are estimated from an analysis of the bend extinction contours in the electron microscope images. The inference is made that strong perpendicular magnetic anisotropy can be associated with magnetostriction anisotropy due to the specific features of the film structure.  相似文献   

18.
Magnetic polymer composites filled with microparticles of the nanocrystalline 5BDSR alloy have been studied. Measurements have been performed mainly by the ferromagnetic resonance method complemented by other spectroscopic methods. A quasi-stepwise structure of spectra near the direction of the magnetic field perpendicular to the nanocomposite plate has been found. It has been shown that incorporation of nanoparticles of technical carbon into the composite leads to a nonmonotonic concentrational dependence of the broadening of spectral lines, which is caused by spatial variations in the perpendicular magnetic anisotropy. The ferromagnetic resonance spectrum has been processed by taking into account the scatter of the magnetic anisotropy and demagnetizing factors.  相似文献   

19.
李正华  李翔 《物理学报》2014,63(16):167504-167504
具有四方结构的L10-FePt合金因其具有高磁晶各向异性和良好的化学稳定性而成为超高密度薄膜磁记录介质的最佳选择.对实验制备得到的磁性能良好的垂直取向L10-FePt合金单层膜进行了微磁学分析.在传统微磁学模型的基础上,根据晶体的对称性,引入了四角磁晶各向异性能密度的唯象表达形式;又依据薄膜生长过程中晶格对称性的破坏,考虑了薄膜面内的应力,并引入了磁弹性能.以四角磁晶各向异性能和磁弹性能为重点,对L10-FePt合金单层膜的磁滞回线进行了详细的分析,并且用微磁学方法确定了薄膜面内应力的大小.  相似文献   

20.
An experimental determination (both direct and indirect) of the characteristics of the magnetic microstructure, namely, the ferromagnetic correlation radius R f and the rms fluctuation of the mean anisotropy D 1/2H a〉, is performed for amorphous and nanocrystalline ferromagnets with a random anisotropy characterized by the quantities R c and D 1/2 H a, respectively. The magnetization curves of amorphous and nanocrystalline ferromagnets are found to exhibit a dependence on H that is caused by the alignment of the magnetizations of individual magnetic blocks with the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号