首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The infrared, the Fourier transform infrared and Fourier transform Raman spectra of p-chlorobenzoic acid (p-CBA) has been recorded in the region 4000-600 cm(-1), 4000-400 cm(-1) and 4000-100 cm(-1), respectively. The optimized geometry, frequency and intensity of the vibrational bands of p-CBA were obtained by the ab initio HF and DFT (B3LYP) methods with complete relaxation in the potential energy surface using 6-311+G(d,p) basis set. The harmonic-vibrational frequencies were calculated and the scaled values have been compared with experimental FT-IR and FT-Raman spectra. The observed and the calculated frequencies are found to be in good agreement. The experimental spectra also coincide satisfactorily with those of theoretically constructed bar type spectrograms.  相似文献   

2.
The FT-IR and FT-Raman spectra of 2,3-difluoro phenol (2,3-DFP) has been recorded in the region 4000-400 and 4000-100 cm(-1), respectively. The optimized geometry, frequency and intensity of the vibrational bands of 2,3-DFP were obtained by the ab initio HF and density functional theory (DFT) levels of theory with complete relaxation in the potential energy surface using 6-311+G(d,p) basis set. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FT-IR and FT-Raman spectra. The observed and the calculated frequencies are found to be in good agreement. The experimental spectra also coincide satisfactorily with those of theoretically constructed bar type spectrograms.  相似文献   

3.
Quantum mechanical calculations of energies, geometries and vibrational wavenumbers of 6-aminopenicillanic acid were carried out by using ab initio HF and density functional theory (DFT/B3LYP) methods with 6-311G(d,p) basis set. The optimized geometrical parameters obtained by HF and DFT calculations are in good agreement with experimental X-ray data. A detailed interpretation of the infrared spectra has also been reported. The theoretical IR and Raman spectrograms have been constructed and compared with the experimental FT-IR and FT-Raman spectra. The differences between the observed and scaled wavenumber values of most of the fundamentals are very small. The thermodynamic parameters have also been computed.  相似文献   

4.
The FTIR and FT-Raman spectra of 2,4-dinitrophenylhydrazine (2,4-DNPH) has been recorded in the region 4000-400 and 3500-50cm-1, respectively. The optimized geometry, frequency and intensity of the vibrational bands of 2,4-DNPH were obtained by the ab initio and density functional theory (DFT) levels of theory with complete relaxation in the potential energy surface using 6-31G(d,p) and 6-311G(d,p) basis sets. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FTIR and FT-Raman spectra. The observed and the calculated frequencies are found to be in good agreement. The experimental spectra also coincide satisfactorily with those of theoretically constructed bar type spectrograms.  相似文献   

5.
The FTIR and FT-Raman spectra of 2-bromo-4-methyl-phenylamine (BMP) have been recorded. From the standard geometrical parameters the geometry of BMP was optimized at ab initio and DFT levels of theory with complete relaxation in the potential energy surface using 6-311+g(d,p) and 6-311+g(2df,2p) basis sets. Several thermodynamic parameters were also calculated for the minimum energy conformer at ab initio and DFT level of theories. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FTIR and FT-Raman spectra. Majority of the computed wavenumbers were found to be in good agreement with the experimental observations. The experimental spectra also coincide satisfactorily with those of theoretically constructed bar type spectrograms.  相似文献   

6.
The FTIR and FT-Raman spectra of 2,4-dichloro-6-nitrophenol (2,4-DC6NP) has been recorded in the region 4000-400 cm(-1) and 3500-100 cm(-1), respectively. The optimized geometry, frequency and intensity of the vibrational bands of (2,4-DC6NP) were obtained by the ab initio and DFT levels of theory with complete relaxation in the potential energy surface using 6-31G(d,p) and 6-311+G(d,p) basis sets. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FTIR and FT-Raman spectra. The observed and the calculated frequencies are found to be in good agreement. The experimental spectra also coincide satisfactorily with those of theoretically constructed bar type spectrograms.  相似文献   

7.
The FTIR and FT-Raman spectra of 2-amino-5-chloropyridine (ACP) has been recorded in the region 4000-400 and 3500-100 cm-1, respectively. The optimized geometry, frequency and intensity of the vibrational bands of ACP were obtained by the ab initio and density functional theory (DFT) levels of theory with complete relaxation in the potential energy surface using 6-31G(d,p) and 6-311+G(2df,2p) basis sets. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FTIR and FT-Raman spectra. The observed and the calculated frequencies are found to be in good agreement. The experimental spectra also coincide satisfactorily with those of theoretically constructed bar type spectrograms.  相似文献   

8.
In this work, the FT-IR and FT-Raman spectra of 1-naphthaleneacetic acid methyl ester (abbreviated as 1-NAAME, C10H7CH2CO2CH3) have been recorded in the region 3600–10 cm−1. The optimum molecular geometry, normal mode wavenumbers, infrared and Raman intensities, Raman scattering activities, corresponding vibrational assignments, Mullikan atomic charges and other thermo-dynamical parameters were investigated with the help of HF and B3LYP (DFT) method using 6-31G(d,p), 6-311G(d,p) basis sets. Reliable vibrational assignments were made on the basis of total energy distribution (TED) calculated with scaled quantum mechanical (SQM) method. From the calculations, the molecules are predicted to exist predominantly as the C1 conformer. The correlation equations between heat capacity, entropy, enthalpy changes and temperatures were fitted by quadratic formulae. Lower value in the HOMO and LUMO energy gap explains the eventual charge transfer interactions taking place within the molecule. UV–VIS spectral analyses of 1NAAME have been researched by theoretical calculations. In order to understand electronic transitions of the compound, TD-DFT calculations on electronic absorption spectra in gas phase and solvent (DMSO and chloroform) were performed. The calculated frontier orbital energies, absorption wavelengths (λ), oscillator strengths (f) and excitation energies (E) for gas phase and solvent (DMSO and chloroform) are also illustrated.  相似文献   

9.
In this work, we will report a combined experimental and theoretical study on molecular and vibrational structure of 4-N,N'-dimethylamino pyridine (4NN'DMAP). The Fourier transform infrared and Fourier transform Raman spectra of 4NN'DMAP was recorded in the solid phase. The optimized geometry was calculated by HF and B3LYP methods with 6-31G(d,p) and 6-311++G(d,p) basis sets. The harmonic vibrational frequencies, infrared intensities and Raman scattering activities of the title compound were performed at same level of theories. The scaled theoretical wavenumber showed very good agreement with the experimental values. The thermodynamic functions of the title compound was also performed at HF/6-31G(d,p) and B3LYP/6-311++G(d,p) level of theories. A detailed interpretation of the infrared and Raman spectra of 4NN'DMAP was reported. The theoretical spectrograms for FT-IR and FT-Raman spectra of the title molecule have been constructed.  相似文献   

10.
The molecular vibrations of xanthine were investigated in polycrystalline sample, at room temperature by Fourier transform infrared (FTIR) and FT-Raman spectroscopies. The spectra of the molecule have been recorded in the regions 4000-50 cm(-1) and 3500-100 cm(-1), respectively. Theoretical information on the optimized geometry, harmonic vibrational frequencies, infrared and Raman intensities were obtained by means of ab initio Hartree-Fock (HF) and density functional theory (DFT) gradient calculations with complete relaxation in the potential energy surface using 6-311++G(d,p) basis set. The vibrational frequencies which were determined experimentally from the spectral data are compared with those obtained theoretically from ab initio and DFT calculations. A close agreement was achieved between the observed and calculated frequencies by refinement of the scale factors. The infrared and Raman spectra were also predicted from the calculated intensities. Thermodynamic properties like entropy, heat capacity, zero point energy have been calculated for the molecule. Unambiguous vibrational assignment of all the fundamentals was made using the potential energy distribution (PED).  相似文献   

11.
The Fourier transform Raman and Fourier transform infrared spectra of 2-amino-4,5-difluorobenzoic acid (2A45DFBA) were recorded in the solid phase. The equilibrium geometry, harmonic vibrational frequencies, infrared intensities and Raman scattering activities, depolarization ratios were calculated by HF and density functional B3LYP method with the 6-31+G(d, p) and 6-311+G(d, p) basis sets. The scaled theoretical wavenumbers showed very good agreement with the experimental values. The thermodynamic functions of the title compound were also performed at HF/6-31+G(d, p)/6-311+G(d, p) and B3LYP/6-31+G(d, p)/6-311+G(d, p) levels of theory. A detailed interpretations of the infrared and Raman spectra of 2-amino-4,5-difluorobenzoic acid is reported. The theoretical spectrograms for FT-IR spectra of the title molecule have been constructed.  相似文献   

12.
The solid phase FTIR and FT-Raman spectra of 4-butyl benzoic acid (4-BBA) have been recorded in the regions 400-4000 and 50-4000cm(-1), respectively. The spectra were interpreted in terms of fundamentals modes, combination and overtone bands. The structure of the molecule was optimized and the structural characteristics were determined by density functional theory (DFT) using B3LYP method with 6-311++G(d,p) as basis set. The vibrational frequencies were calculated for monomer and dimer by DFT method and were compared with the experimental frequencies, which yield good agreement between observed and calculated frequencies. The infrared and Raman spectra were also predicted from the calculated intensities. (13)C and (1)H NMR spectra were recorded and (13)C and (1)H nuclear magnetic resonance chemical shifts of the molecule were calculated using the gauge independent atomic orbital (GIAO) method. UV-visible spectrum of the compound was recorded in the region 200-400nm and the electronic properties HOMO and LUMO energies were measured by time-dependent TD-DFT approach. The geometric parameters, energies, harmonic vibrational frequencies, IR intensities, Raman intensities, chemical shifts and absorption wavelengths were compared with the available experimental data of the molecule.  相似文献   

13.
The Fourier transform Raman and Fourier transform infrared spectra of 3,4-dichlorobenzyl alcohol were recorded in the solid phase. The equilibrium geometry, harmonic vibrational frequencies, infrared intensities and Raman scattering activities, depolarization ratios, reduced masses were calculated by HF and density functional B3LYP method with the 6-311 G** basis set. The scaled theoretical wavenumbers showed very good agreement with the experimental values. The thermodynamic functions of the title compound were also performed at HF/6-311G** and B3LYP/6-311G** levels of theory. A detailed interpretations of the infrared and Raman spectra of 3,4-dichlorobenzyl alcohol is reported. The theoretical spectrograms for FT-IR spectra of the title molecule have been constructed.  相似文献   

14.
Quantum chemical calculations of energies, geometrical structure and vibrational wave numbers of 3,4-dimethoxybenzonitrile (DMBN) were carried out by the ab initio Hartree-Fock (HF) and density functional theory (DFT) with complete relaxation in the potential energy surface using 6-311++G(d,p) basis set. The computed values of frequencies are scaled using a suitable scale factor to yield good coherence with the observed values. Making use of the recorded data, the complete vibrational assignments are made and analysis of the observed fundamental bands of molecule is carried out. The geometries and normal modes of vibrations obtained from ab initio HF and B3LYP calculations are in good agreement with the experimentally observed data. The electric dipole moment (μ) and the first hyperpolarizability (β) values of the investigated molecule have been computed using ab initio quantum mechanical calculations. The calculated HOMO and LUMO energies show that charge transfer occur within the molecule. The theoretical FTIR and FT-Raman spectra for the title molecule have been constructed.  相似文献   

15.
FTIR and FT-Raman spectra of four generations of phosphorus-containing dendrons with terminal aldehyde or PCl groups have been recorded and analyzed. Their spectral patterns are determined by the ratio T/R (T, the number of terminal groups; R, the number of repeated units). Bands assigned to the core, repeated units and terminal groups were separated by the difference spectroscopy method. The optimized geometry, frequencies and intensity of IR bands of G(1v) generation dendron with terminal aldehyde groups were obtained by the density functional theory (DFT). It was found that the internal skeleton of molecules exists in a single stable conformation with planar O-C(6)H(4)-CHN-N(CH(3))-P(S) fragments, but terminal groups may adopt the t,g,g- and t,-g,g-rotational isomers. The t,-g,g-conformer is 0.74 kcal/mol less stable compared to the t,g,g-conformer. The bond length and bond angles obtained by DFT show the best agreement with experimental data. Relying on DFT calculations a complete assignment of vibrations is proposed for different parts of the studied dendrons. The calculated frequencies and intensity of IR bands of the t,g,g- and t,-g,g-conformers of G(1v) are found to be in reasonable agreement with the experimental results. The most reactive site in dendron is the core function and vinyl group is preferred for nucleophilic attack. In dendrimer the most reactive are the terminal groups.  相似文献   

16.
The FT-IR and FT-Raman vibrational spectra of 1,3-dichlorobenzene (1,3-DCB) have been recorded using Bruker IFS 66 V Spectrometer in the range 4000-100 cm(-1). A detailed vibrational spectral analysis has been carried out and assignments of the observed fundamental bands have been proposed on the basis of peak positions and relative intensities. The optimized molecular geometry, vibrational frequencies, atomic charges, dipole moment, rotational constants and several thermodynamic parameters in the ground state were calculated using ab initio Hartree-Fock (HF) and DFT (B3LYP) methods with 6-31++G (d, p) and 6-311++G (d, p) basis sets. With the help of different scaling factors, the observed vibrational wave numbers in FT-IR and FT-Raman spectra were analyzed and assigned to different normal modes of the molecule. Most of the modes have wave numbers in the expected range. The inductive effect of Chlorine atoms in the benzene molecule has also been investigated.  相似文献   

17.
In this work, we will report a combined experimental and theoretical study on molecular and vibrational structure of benzimidazole. The laser Raman and Fourier transform infrared spectra of benzimidazole were recorded in the solid phase. The equilibrium geometry, harmonic vibrational frequencies, infrared intensities, Raman scattering activities, depolarization ratios and reduced masses were calculated by HF and density functional B3LYP method with the 6-311G(d,p) basis set. The scaled theoretical wavenumbers showed very good agreement with the experimental values. The thermodynamic functions of the title compound were also performed at HF/6-31G(d,p)/6-311G(d,p) and B3LYP/6-31G(d,p)/6-311G(d,p) levels of theory. A detailed interpretations of the infrared and Raman spectra of benzimidazole is reported. The theoretical spectrograms for FT-IR spectra of the title molecule have been constructed.  相似文献   

18.
FT-IR and FT-Raman spectra of 5-methoxysalicylic acid (5MeOSA) have been experimentally reported in the region of 4000–10 cm−1 and 4000–50 cm−1, respectively. The optimized geometric parameters, conformational equilibria, normal mode frequencies and corresponding vibrational assignments of 5MeOSA (C8H8O4) are theoretically examined by means of B3LYP hybrid density functional theory (DFT) method together with 6-31++G(d,p) basis set. Furthermore, reliable vibrational assignments have made on the basis of potential energy distribution (PED) calculated and the thermodynamics functions, highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO) of 5MeOSA have been predicted. Calculations are employed for different conformations of 5MeOSA, both in gas phase and in solution. Solvent effects are investigated using chloroform and dimethylsulfoxide. All results indicate that B3LYP method is able to provide satisfactory results for predicting vibrational frequencies and the structural parameters, vibrational frequencies and assignments, IR and Raman intensities of 5MeOSA are solvent dependent.  相似文献   

19.
In this work, the vibrational spectral analysis was carried out by using FT-IR and FT-Raman spectroscopy in the range 400–4000 and 50–3500 cm?1 respectively, for the title molecule. The structural and spectroscopic data of the molecule in the ground state were calculated by using density functional method using 6-311++G(d,p) basis set. The vibrational frequencies were calculated and scaled values were compared with experimental FT-IR and FT-Raman spectra. The observed and calculated frequencies are found to be in good agreement. The complete assignments of all the vibrational mode were performed on the basis of the total energy distributions (TED). 13C and 1H NMR chemical shifts results were given and are in agreement with the corresponding experimental values. The theoretically constructed FT-IR and FT-Raman spectra exactly coincides with experimental one.  相似文献   

20.
The infrared spectra of meso-2,4-pentanediol and racemic-2,4-pentanediol were measured in an argon matrix at 20 K. The Raman spectra of the pure liquids (meso and racemic) were measured at room temperature. The spectra were obtained using a Fourier transform spectrophotometer and a cryostat for the low temperature matrix. The meso and racemic forms of the diol were separated by means of a spinning band distillation column. The energies of nine possible conformers of the meso form and nine conformers of the racemic form were calculated. Extensive ab initio calculations using B3LYP, MP2 and HF methods with several basis sets consistently gave the lowest energy for the TT conformer of the meso form and the GT (=TG) conformer of the racemic form. Ab initio calculations at the B3LYP/6-31G** level were performed for the lowest energy conformer of meso and racemic pentanediol to obtain the equilibrium geometry, vibrational frequencies, and infrared and Raman intensities. Calculated and experimental frequencies were compared to make vibrational assignments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号