首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In plasma membrane proteome research, contamination of the isolated plasma membrane fraction with proteins from other organelles is still a problem. Even if highly specific isolation methods are used, such as density gradient centrifugation combined with selective extraction, contaminating proteins cannot be completely removed. To solve this problem, a protocol for the isolation of highly pure plasma membrane fractions from rat liver and two different hepatocellular carcinoma cell lines was developed. Magnetic beads with immobilized mAb's against highly expressed membrane proteins were used for specific binding of membrane vesicles and their separation from other organelles. Isolated plasma membranes were further selectively solubilized with different reagents and analyzed by use of different methods, such as Western blotting, 1- and 2-DE, and MS. Purification and further selective solubilization was validated by use of mAb's against the marker integral plasma membrane protein carcinoembryonic antigen cell adhesion molecule 1, and identification of isolated proteins by MS. The method presented here minimizes contamination with other organelles and enables further identification of membrane proteins.  相似文献   

2.
With the completion of many genome projects, a shift is now occurring from the acquisition of gene sequence to understanding the role and context of gene products within the genome. The opportunistic pathogen Pseudomonas aeruginosa is one organism for which a genome sequence is now available, including the annotation of open reading frames (ORFs). However, approximately one third of the ORFs are as yet undefined in function. Proteomics can complement genomics, by characterising gene products and their response to a variety of biological and environmental influences. In this study we have established the first two-dimensional gel electrophoresis reference map of proteins from the membrane fraction of P. aeruginosa strain PA01. A total of 189 proteins have been identified and correlated with 104 genes from the P. aeruginosa genome. Annotated membrane proteins could be grouped into three distinct categories: (i) those with functions previously characterised in P. aeruginosa (38%); (ii) those with significant sequence similarity to proteins with assigned function or hypothetical proteins in other organisms (46%); and (iii) those with unknown function (16%). Transmembrane prediction algorithms showed that each identified protein sequence contained at least one membrane-spanning region. Furthermore, the current methodology used to isolate the membrane fraction was shown to be highly specific since no contaminating cytosolic proteins were characterised. Preliminary analysis showed that at least 15 gel spots may be glycosylated in vivo, including three proteins that have not previously been functionally characterised. The reference map of membrane proteins from this organism is now the basis for determining surface molecules associated with antibiotic resistance and efflux, cell-cell signalling and pathogen-host interactions in a variety of P. aeruginosa strains.  相似文献   

3.
The localization of membrane transporters at the forefront of natural barriers makes these proteins very interesting due to their involvement in the absorption and distribution of nutrients and xenobiotics, including drugs. Over the years, structure/function relationship studies have been performed employing several strategies, including chemical modification of exposed amino acid residues. These approaches are very meaningful when applied to membrane transporters, given that these proteins are characterized by both hydrophobic and hydrophilic domains with a different degree of accessibility to employed chemicals. Besides basic features, the chemical targeting approaches can disclose information useful for pharmacological applications as well. An eminent example of this picture is the histidine/large amino acid transporter SLC7A5, known as LAT1 (Large Amino Acid Transporter 1). This protein is crucial in cell life because it is responsible for mediating the absorption and distribution of essential amino acids in peculiar body districts, such as the blood brain barrier and placenta. Furthermore, LAT1 can recognize a large variety of molecules of pharmacological interest and is also considered a hot target for drugs due to its over-expression in virtually all human cancers. Therefore, it is not surprising that the chemical targeting approach, coupled with bioinformatics, site-directed mutagenesis and transport assays, proved fundamental in describing features of LAT1 such as the substrate binding site, regulatory domains and interactions with drugs that will be discussed in this review. The results on LAT1 can be considered to have general applicability to other transporters linked with human diseases.  相似文献   

4.
Gels mimicking antibodies in their selective recognition of proteins   总被引:4,自引:0,他引:4  
Summary In a previous paper we presented preliminary experiments aimed at the preparation of gel particles with the property to recognize selectively some particular protein (hemoglobin, cytochrome C, transferrin) [1]. Using the same method we show in this article that human growth hormone, ribonuclease and myoglobin from horse can also be adsorbed specifically, indicating that the method may be universal or at least applicable to a great number of proteins. A gel with specific adsorption of three model proteins was synthesized in order to demonstrate that the beds can be employed to remove (traces of) several proteins contaminating a sample (“negative purification”). The degree of selective recognition is high, to judge from the fact that myoglobin from horse, but not that from whale, was adsorbed onto a column designed to bind specifically the former protein. This selectivity is noteworthy, since these two proteins have similar amino acid sequences and 3-D structures. The method for the synthesis of the specific gels involves polymerization of appropriate monomers (for instance acrylamide and its derivatives) in the presence of the protein to be adsorbed specifically, granulation of the gel formed, packing a column with the gel particles, washing the column to remove the protein and finally application of the sample for selective adsorption of the protein. The approach resembles that used for entrapment (immobilization) of proteins for affinity chromatography and that for molecular imprinting, with the distinct difference that the monomer composition is quite different and thereby the binding mechanism. This mechanism is discussed, for instance, in terms of (1) a new classification system for chromatographic beds based on the number of bonds between the solute and the matrix and the strength of each bond and (2) “non-specific bonds” (these bonds are often harmful in conventional chromatography, but we have used them to advantage). In this classification system the selective recognition is characterized by a large number of weak bonds. Therefore, so-called functional monomers are not used for the preparation of the gels because they often are charged and, accordingly, give rise to strong electrostatic interactions, i.e. the beds behave to some extent as ion-exchangers. In most experiments we have used a polyacrylamide gel with large pores to facilitate diffusion of proteins into and out of the gel granules. When used in chromatography these soft gels (which can be used repeatedly) allow only rather low flow rates. This problem can be overcome by a new approach to prepare the granules. Potential applications of the selective beds are discussed, as well as future improvements. YW's visit to the Department was sponsored by the Swedish Institute, Stockholm, Sweden.  相似文献   

5.
As part of our continuing studies into the biochemical basis of long-term changes in neuronal function in Aplysia, we have developed a simple method for obtaining amino acid sequence information from proteins isolated on two-dimensional gels. Proteins isolated on preparative two-dimensional gels are digested in situ with Staphylococcus aureus V8 protease, and the resulting peptides electrophoresed, transferred to a polyvinylidene difluoride membrane, and sequenced in a gas-phase sequencer. The method is simple and should be applicable to a variety of other systems where the development of a two-dimensional gel database is underway.  相似文献   

6.
J Suttnar  J E Dyr 《Electrophoresis》1989,10(10):704-708
The electrophoretic titration curves of complex mixtures of vitamin K-dependent human blood proteins and proteins of Bothrops asper venom were investigated. In both protein mixtures some curves exhibited marked distortions such as additional maxima and minima when Pharmalyte 3-10 carrier ampholytes were used for isoelectric focusing in agarose gels. The distortions result from an unspecific interactions between some carrier ampholyte constituents with particular proteins. The interacting carrier ampholyte components could be completely removed by binding to albumin and ultrafiltration through a UM-2 Amicon membrane with resultant regular titration curves. The interacting carrier ampholyte species were only partially removed by ultrafiltration through a UM-2 membrane without incubation with albumin.  相似文献   

7.
脂蛋白合成新进展   总被引:3,自引:0,他引:3  
郭燕婷  李艳梅  赵玉芬 《有机化学》2004,24(7):722-727,J001
生物体内的信号传导蛋白在膜上的定位与其生物功能的发挥依赖于特定脂肪链的修饰,然而传统的基因表达法合成脂蛋白,得到的纯品产率很低.在近10年中,逐渐发展起来一种新的合成方法,即将化学合成脂修饰的多肽与基因表达培养蛋白相结合,可以合成出具有多条脂肪链修饰的蛋白缀合物,并且整个合成过程在非常温和的环境中进行,产品能保持较高的纯度和活性.采用该方法合成的脂蛋白用于体外的实验中,其结果与生物体内的现象非常接近.脂蛋白合成方法的发展对研究细胞中的信号传导过程具有重要的意义,并在药物合成和提高药效方面都有很多应用,这对于研究恶性肿瘤等疾病的发病机理起到了重要的推动作用.同时该脂蛋白合成的成功是采用化学法合成生物大分子解释生物体内的现象一个重大的突破,是化学生物学发展重要的一步.  相似文献   

8.
Carrier ampholytes were found to enhance the chemiluminescence (CL) emission from the 3-aminophthalic hydrazide (luminol)-hydrogen peroxide system. They can be used as a chemiluminescent probe for rapid detection of major proteins in gels. This probe attracted much interest due to its ability to attach proteins, and to the possibility to combine it with separation techniques generating the CL emission directly. Increased signal intensity was achieved employing optimized concentrations of the carrier ampholyte enhancer. The binding of carrier ampholyte to proteins was found to occur at the pI of the proteins. Proteins from different regions of the gels were identified by their matrix-assisted TOF mass spectra and by appropriate database search, the results illustrating the possibility of major protein detection in human serum. Direct CL image detection with the carrier ampholyte probe can be applied for the detection of characteristic proteins in patients, i.e., proteins which cannot be detected without the probe.  相似文献   

9.
2-DE is one of the most powerful methods for analyzing proteins expressed in cells and tissues. Immunodetection of proteins blotted on a polymer membrane is the method of choice for detecting specific proteins in 2-D gels. To precisely locate spots of immunoreactive proteins in 2-D gels, both dye staining and immunodetection were performed on the same PVDF membrane. Prior to immunodetection, nonspecific adsorption of the antibodies to the membrane was blocked with a synthetic polymer-based reagent (N-102) after protein transfer. The protein was then stained with colloidal gold or CBB followed by protein spot identification by LC-MS. Described herein is a method for multiplex analysis of proteins transferred to a PVDF membrane. Proteins that were phosphorylated at tyrosine in the phosphoproteome of rice callus or human ovarian cancer cells were detected by immunoblotting and subsequently identified with high precision.  相似文献   

10.
Membrane proteins are involved in essential biological processes such as energy conversion, signal transduction, solute transport and secretion. All biological processes, also those involving membrane proteins, are steered by molecular interactions. Molecular interactions guide the folding and stability of membrane proteins, determine their assembly, switch their functional states or mediate signal transduction. The sequential steps of molecular interactions driving these processes can be described by dynamic energy landscapes. The conceptual energy landscape allows to follow the complex reaction pathways of membrane proteins while its modifications describe why and how pathways are changed. Single‐molecule force spectroscopy (SMFS) detects, quantifies and locates interactions within and between membrane proteins. SMFS helps to determine how these interactions change with temperature, point mutations, oligomerization and the functional states of membrane proteins. Applied in different modes, SMFS explores the co‐existence and population of reaction pathways in the energy landscape of the protein and thus reveals detailed insights into local mechanisms, determining its structural and functional relationships. Here we review how SMFS extracts the defining parameters of an energy landscape such as the barrier position, reaction kinetics and roughness with high precision.  相似文献   

11.
Claeys D  Geering K  Meyer BJ 《Electrophoresis》2005,26(6):1189-1199
Two-dimensional (2-D) Blue Native/SDS gel electrophoresis combines a first-dimensional separation of monomeric and multimeric proteins in their native state with a second denaturing dimension. These high-resolution 2-D gels aim at identifying multiprotein complexes with respect to their subunit composition. We applied this method for the first time to analyze two human platelet subproteomes: the cytosolic and the microsomal membrane protein fraction. Solubilization of platelet membrane proteins was achieved with the nondenaturing detergent n-dodecyl-beta-D-maltoside. To validate native solubilization conditions, we demonstrated the correct assembly of the Na,K-ATPase, a functional multimeric transmembrane protein, when expressed in Xenopus oocytes. We identified 63 platelet proteins after in-gel tryptic digestion of 58 selected protein spots and liquid chromatography-coupled tandem mass spectrometry. Nine proteins were detected for the first time in platelets by a proteomic approach. We also show that this technology efficiently resolves several known membrane and cytosolic multiprotein complexes. Blue Native/SDS gel electrophoresis is thus a valuable procedure to analyze specific platelet subproteomes, like the membrane(-bound) protein fraction, by mass spectrometry and immunoblotting and could be relevant for the study of protein-protein interactions generated following platelet activation.  相似文献   

12.
Progress in characterizing native membrane proteins and protein membranes by atomic force microscopy (AFM) opens exciting possibilities. While the structure, oligomeric state and supramolecular assembly of membrane proteins are assessed directly by AFM, single-molecule force spectroscopy (SMFS) identifies interactions that stabilize the fold, and characterize the switching between functional states of membrane proteins. But what is next? How can we approach cell biological, pharmaceutical and medical questions associated with native cellular membranes? How can we probe the functional state of cell membranes and study the dynamic formation of compartments? Such questions have been addressed by immobilizing membranes on solid supports, which ensures the integrity of the native state of membrane proteins but does not necessarily provide a native-like environment. Direct attachment of membranes to solid supports involves non-specific interactions that may change the physical state of supported lipids and proteins possibly hindering the assembly of membrane proteins into native functional compartments. Thus, to observe the dynamic assembly and working of proteins in native membranes by AFM, supports are required that mimic the native environment of the cell membrane as closely as possible. This review reports on recent progress in characterizing native membrane proteins by AFM, and surveys conventional and new approaches of supporting surfaces, which will allow the function, dynamics, and assembly of membrane proteins to be studied by AFM in native cell membranes.  相似文献   

13.
There are different types of membrane proteins in a cellular membrane,and most of them must correctly assemble into appropriate clusters for their cellular functions.In this work,we suggest a physical mechanism for selective aggregation of different membrane proteins without specific protein-protein attraction by dissipative particle dynamics method.A membrane-mediated interaction may result in different protein clusters with ideal mixing,nonideal mixing and demixing of different types of membrane proteins,depending on the extent of the similarity of membrane deformations by those proteins.  相似文献   

14.
In this paper, we report on a novel electrophoretic separation and analysis method for membrane pore‐forming proteins in multilayer lipid membranes (MLMs) in order to overcome the problems related to current separation and analysis methods of membrane proteins, and to obtain a high‐performance separation method on the basis of specific properties of the lipid membranes. We constructed MLMs, and subsequently characterized membrane pore‐forming protein behavior in MLMs. Through the use of these MLMs, we were able to successfully separate and analyze membrane pore‐forming proteins in MLMs. To the best of our knowledge, this research is the first example of membrane pore‐forming protein separation in lipid membranes. Our method can be expected to be applied for the separation and analysis of other membrane proteins including intrinsic membrane proteins and to result in high‐performance by utilizing the specific properties of lipid membranes.  相似文献   

15.
Membrane proteins play essential roles in regulating various fundamental cellular functions. To investigate membrane proteins, extraction and purification are usually prerequisite steps. Here, we demonstrated a microfluidic aqueous PEG/detergent two-phase system for the purification of membrane proteins from crude cell extract, which replaced the conventional discontinuous agitation method with continuous extraction in laminar flows, resulting in significantly increased extraction speed and efficiency. To evaluate this system, different separation and detection methods were used to identify the purified proteins, such as capillary electrophoresis, SDS-PAGE and nano-HPLC-MS/MS. Swiss-Prot database with Mascot search engine was used to search for membrane proteins from random selected bands of SDS-PAGE. Results indicated that efficient purification of membrane proteins can be achieved within 5-7s and approximately 90% of the purified proteins were membrane proteins (the highest extraction efficiency reported up to date), including membrane-associated proteins and integral membrane proteins with multiple transmembrane domains. Compared to conventional approaches, this new method had advantages of greater specific surface area, minimal emulsification, reduced sample consumption and analysis time. We expect the developed method to be potentially useful in membrane protein purifications, facilitating the investigation of membrane proteomics.  相似文献   

16.
Structural information about the interactions between membrane proteins and their ligands provides insights into the membrane protein functions. A variety of surfactants have been used for structural analyses of membrane proteins, and in some cases, they yielded successful results. However, the use of surfactants frequently increases the conformational instability of membrane proteins and distorts their normal function. Here, we propose a new strategy of membrane protein reconstitution into lipid bilayers on affinity beads, which maintains the native conformation and function of the protein for NMR studies. The reconstituted membrane proteins are suitable for NMR analyses of interactions, by using the transferred cross-saturation method. The strategy was successfully applied to the interaction between a potassium ion channel, KcsA, and a pore-blocker, agitoxin2 (AgTx2). This strategy would be useful for analyzing the interactions between various membrane proteins and their ligands.  相似文献   

17.
An improved protocol for the two-dimensional analysis of proteins of the Corynebacterium glutamicum cytoplasmic membrane fraction is described. By use of increased 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) concentrations (2-4%) and an optimized electrophoresis protocol, horizontal streaking of proteins of the cytoplasmic membrane fraction was almost completely avoided. More important, in contrast to a previously published method, both a sample tray and IPG-phor isoelectric focusing unit can be used for the in-gel application of proteins. The described protocol was also found to be suitable for hydrophilic cytoplasmic proteins. Additionally, the preparation and analysis of C. glutamicum cell surface proteins is described. Proteins were extracted with lauroyl sarcosinate and 100-120 spots were separated on two-dimensional (2-D) gels in comparison to 18-20 spots observed previously by standard sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). C. glutamicum proteins can now be separated into three distinct fractions resembling different functional units of the bacterial cell.  相似文献   

18.
Two-dimensional gel electrophoresis using immobilized pH gradient tube gels   总被引:1,自引:0,他引:1  
An apparatus for the preparation of gels for immobilized pH gradient isoelectric focusing (IPG) in glass tubes was developed. Using this apparatus, the highly reproducible immobilized pH gradient can be formed with Immobilines in polyacrylamide gels, and IPG gels at all possible pH ranges can be easily prepared at low cost. The IPG tube gels in the first dimension in two-dimensional gel electrophoresis was used to separate and identify a number of rice embryo proteins in the proteome analysis. There was no difference in resolution of proteins between the tube gels and the commercially available slab gels; after electrophoresis, however, we could efficiently obtain a larger amount of the purified proteins from the tube gels than from the slab gels.  相似文献   

19.
A method is described for the preparation of rehydratable agarose gels, with specific application to the direct incorporation of 9 M urea and carrier ampholytes into rehydratable agarose gels for use in isoelectric focusing. After drying the agarose gel containing an uncharged linear polyacrylamide, one gel volume of a 9 M urea-carrier ampholyte solution is absorbed directly into the gel in 60 min, eliminating equilibration or dialysis of the gel in larger volumes of the 9 M urea-carrier ampholyte solution. Proteins with a molecular mass of 970,000 Da can be separated by isoelectric focusing in these rehydratable gels. The focused proteins can then be quantitatively transferred to nitrocellulose in less than 10 min, and any immunostaining procedure can be used to probe the blotted proteins. These agarose gels are easy to make, they rehydrate rapidly and they can be used in applications other than isoelectric focusing.  相似文献   

20.
The dimerizations of membrane proteins, Outer Membrane Phospholipase A (OMPLA) and glycophorin A (GPA), have been simulated by an adapted Brownian Dynamics program. To mimic the membrane protein environment, we introduced a hybrid electrostatic potential map of membrane and water for electrostatic interaction calculations. We added a van der Waals potential term to the force field of the current version of the BD program to simulate the short-range interactions of the two monomers. We reduced the BD sampling space from three dimensions to two dimensions to improve the efficiency of BD simulations for membrane proteins. The OMPLA and GPA dimers predicted by our 2D-BD simulation and structural refinement is in good agreement with the experimental structures. The adapted 2D-BD method could be used for prediction of dimerization of other membrane proteins, such as G protein-coupled receptors, to help better understanding of the structures and functions of membrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号