首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chemical pathways leading to the hydroxylated aromatic amino acids in phenylalanine and tryptophan hydroxylases have been investigated by means of hybrid density functional theory. In the catalytic core of these non-heme iron enzymes, dioxygen reacts with the pterin cofactor and is likely to be activated by forming an iron(IV)=O complex. The capability of this species to act as a hydroxylating intermediate has been explored. Depending on the protonation state of the ligands of the metal, two different mechanisms are found to be energetically possible for the hydroxylation of phenylalanine and tryptophan by the high-valent iron-oxo species. With a hydroxo ligand the two-electron oxidation of the aromatic ring passes through a radical, while an arenium cation is involved when a water replaces the hydroxide. After the attack of the activated oxygen on the substrate, it is also found that a 1,2-hydride shift (known as an NIH shift) generates a keto intermediate, which can decay to the true product through an intermolecular keto-enol tautomerization. The benzylic hydroxylation of 4-methylphenylalanine by the Fe(IV)=O species has also been investigated according to the rebound mechanism. The computed energetics lead to the conclusion that Fe(IV)=O is capable not only of aromatic hydroxylation, but also of benzylic hydroxylation.  相似文献   

2.
High-valent iron-oxo species have frequently been invoked in the oxidation of hydrocarbons by both heme and non-heme enzymes. Although a formally Fe(V)=O species, that is, [(Por(*))Fe(IV)=O](+), has been widely accepted as the key oxidant in stereospecific alkane hydroxylation by heme systems, it is not established that such a high-valent state can be accessed by a non-heme ligand environment. Herein we report a systematic study on alkane oxidations with H(2)O(2) catalyzed by a group of non-heme iron complexes, that is, [Fe(II)(TPA)(CH(3)CN)(2)](2+) (1, TPA = tris(2-pyridylmethyl)amine) and its alpha- and beta-substituted analogues. The reactivity patterns of this family of Fe(II)(TPA) catalysts can be modulated by the electronic and steric properties of the ligand environment, which affects the spin states of a common Fe(III)-OOH intermediate. Such an Fe(III)-peroxo species is high-spin when the TPA ligand has two or three alpha-substituents and is proposed to be directly responsible for the selective C-H bond cleavage of the alkane substrate. The thus-generated alkyl radicals, however, have relatively long lifetimes and are susceptible to radical epimerization and trapping by O(2). On the other hand, 1 and the beta-substituted Fe(II)(TPA) complexes catalyze stereospecific alkane hydroxylation by a mechanism involving both a low-spin Fe(III)-OOH intermediate and an Fe(V)=O species derived from O-O bond heterolysis. We propose that the heterolysis pathway is promoted by two factors: (a) the low-spin iron(III) center which weakens the O-O bond and (b) the binding of an adjacent water ligand that can hydrogen bond to the terminal oxygen of the hydroperoxo group and facilitate the departure of the hydroxide. Evidence for the Fe(V)=O species comes from isotope-labeling studies showing incorporation of (18)O from H(2)(18)O into the alcohol products. (18)O-incorporation occurs by H(2)(18)O binding to the low-spin Fe(III)-OOH intermediate, its conversion to a cis-H(18)O-Fe(V)=O species, and then oxo-hydroxo tautomerization. The relative contributions of the two pathways of this dual-oxidant mechanism are affected by both the electron donating ability of the TPA ligand and the strength of the C-H bond to be broken. These studies thus serve as a synthetic precedent for an Fe(V)=O species in the oxygen activation mechanisms postulated for non-heme iron enzymes such as methane monooxygenase and Rieske dioxygenases.  相似文献   

3.
The first part of the catalytic cycle of the pterin‐dependent, dioxygen‐using nonheme‐iron aromatic amino acid hydroxylases, leading to the FeIV?O hydroxylating intermediate, has been investigated by means of density functional theory. The starting structure in the present investigation is the water‐free Fe? O2 complex cluster model that represents the catalytically competent form of the enzymes. A model for this structure was obtained in a previous study of water‐ligand dissociation from the hexacoordinate model complex of the X‐ray crystal structure of the catalytic domain of phenylalanine hydroxylase in complex with the cofactor (6R)‐L ‐erythro‐5,6,7,8‐tetrahydrobiopterin (BH4) (PAH‐FeII‐BH4). The O? O bond rupture and two‐electron oxidation of the cofactor are found to take place via a Fe‐O‐O‐BH4 bridge structure that is formed in consecutive radical reactions involving a superoxide ion, O2?. The overall effective free‐energy barrier to formation of the FeIV?O species is calculated to be 13.9 kcal mol?1, less than 2 kcal mol?1 lower than that derived from experiment. The rate‐limiting step is associated with a one‐electron transfer from the cofactor to dioxygen, whereas the spin inversion needed to arrive at the quintet state in which the O? O bond cleavage is finalized, essentially proceeds without activation.  相似文献   

4.
The enzymatic oxidation of silk with H(2)O(2) in the presence of horseradish peroxidase (HRP) has been investigated. Two intermediate complexes have been observed during this reaction. Both can be attributed to Fe(4+) ions axially bonded to an oxygen atom and to a porphyrin radical (P). In the most unstable of them, indicated as compound II, the chemical bond between [Fe(IV)=O](2+) and P was weaker than in the other, indicated as compound I. The former compound disappeared within 1 h of the reaction, at difference with the latter, traces of which were observed even after 3 weeks with dried samples. However, the chemical bond between [Fe(IV)=O](2+) and P in compound I weakened during the sample ageing. All these phenomena have been enlightened by electron paramagnetic resonance (EPR) and spectrophotometric ultraviolet/visible (UV/Vis) measurements.  相似文献   

5.
Density functional theory using the B3LYP hybrid functional has been employed to investigate the reactivity of Fe(TPA) complexes (TPA = tris(2-pyridylmethyl)amine), which are known to catalyze stereospecific hydrocarbon oxidation when H(2)O(2) is used as oxidant. The reaction pathway leading to O-O bond heterolysis in the active catalytic species Fe(III)(TPA)-OOH has been explored, and it is shown that a high-valent iron-oxo intermediate is formed, where an Fe(V) oxidation state is attained, in agreement with previous suggestions based on experiments. In contrast to the analogous intermediate [(Por.)Fe(IV)=O](+1) in P450, the TPA ligand is not oxidized, and the electrons are extracted almost exclusively from the mononuclear iron center. The corresponding homolytic O-O bond cleavage, yielding the two oxidants Fe(IV)=O and the OH. radical, has also been considered, and it is shown that this pathway is inaccessible in the hydrocarbon oxidation reaction with Fe(TPA) and hydrogen peroxide. Investigations have also been performed for the O-O cleavage in the Fe(III)(TPA)-alkylperoxide species. In this case, the barrier for O-O homolysis is found to be slightly lower, leading to loss of stereospecificity and supporting the experimental conclusion that this is the preferred pathway for alkylperoxide oxidants. The difference between hydroperoxide and alkylperoxide as oxidant derives from the higher O-O bond strength for hydrogen peroxide (by 8.0 kcal/mol).  相似文献   

6.
Cytochromes P450 catalyze a range of different oxygen-transfer processes including aliphatic and aromatic hydroxylation, epoxidation, and sulfoxidation reactions. Herein, we have investigated substrate sulfoxidation mediated by models of P450 enzymes as well as by biomimetic oxidants using density functional-theory methods and we have rationalized the sulfoxidation reaction barriers and rate constants. We carried out two sets of calculations: first, we calculated the sulfoxidation by an iron(IV)-oxo porphyrin cation radical oxidant [Fe(IV)=O(Por(+.))SH] that mimics the active site of cytochrome P450 enzymes with a range of different substrates, and second, we studied one substrate (dimethyl sulfide) with a selection of different iron(IV)-oxo porphyrin cation radical oxidants [Fe(IV)=O(Por(+.))L] with varying axial ligands L. The study presented herein shows that the barrier height for substrate sulfoxidation correlates linearly with the ionization potential of the substrate, thus reflecting the electron-transfer processes in the rate-determining step of the reaction. Furthermore, the axial ligand of the oxidant influences the pK(a) value of the iron(IV)-oxo group, and, as a consequence, the bond dissociation energy (BDE(OH) value correlates with the barrier height for the reverse sulfoxidation reaction. These studies have generalized substrate-sulfoxidation reactions and have shown how they fundamentally compare with substrate hydroxylation and epoxidation reactions.  相似文献   

7.
Tyrosine hydroxylase (TyrH) is a mononuclear, non-heme iron monooxygenase that catalyzes the pterin-dependent hydroxylation of tyrosine to dihydroxyphenylalanine. When 4-methylphenylalanine is used as a substrate for TyrH, 4-hydroxymethylphenylalanine is one of the amino acid products. To examine the mechanism of benzylic hydroxylation, the products and their isotopic compositions were determined with 4-methylphenylalanines containing a mono-, di-, or trideuterated methyl group as substrates. Intrinsic primary and secondary deuterium isotope effects for benzylic hydroxylation of 9.6 +/- 0.9 and 1.21 +/- 0.08, respectively, were derived from the data. The magnitudes of these isotope effects are consistent with quantum mechanical tunneling of the hydrogen. The similarity of the effects to those seen for benzylic hydroxylation by other enzymes supports a mechanism where a high valence iron-oxo species, Fe(IV)=O, is the hydroxylating intermediate.  相似文献   

8.
Electron transfer from tetrahydropterins to iron porphyrins, with formation of intermediate tetrahydropterin cation radicals, is a very general reaction that was shown to occur not only with tetrahydrobiopterin, as originally found in NO-synthases, but also with another important biological cofactor, tetrahydrofolate, and various iron porphyrins, either in their ferric state, or in the Fe(II)O(2) state, as in the first model of the corresponding NO-synthase reaction described in this paper.  相似文献   

9.
The mechanisms of oxidative N-dealkylation of amines by heme enzymes including peroxidases and cytochromes P450 and by functional models for the active Compound I species have long been studied. A debated issue has concerned in particular the character of the primary step initiating the oxidation sequence, either a hydrogen atom transfer (HAT) or an electron transfer (ET) event, facing problems such as the possible contribution of multiple oxidants and complex environmental effects. In the present study, an oxo iron(IV) porphyrin radical cation intermediate 1, [(TPFPP)*+ Fe(IV)=O]+ (TPFPP = meso-tetrakis (pentafluorophenyl)porphinato dianion), functional model of Compound I, has been produced as a bare species. The gas-phase reaction with amines (A) studied by ESI-FT-ICR mass spectrometry has revealed for the first time the elementary steps and the ionic intermediates involved in the oxidative activation. Ionic products are formed involving ET (A*+, the amine radical cation), formal hydride transfer (HT) from the amine ([A(-H)]+, an iminium ion), and oxygen atom transfer (OAT) to the amine (A(O), likely a carbinolamine product), whereas an ionic product involving a net initial HAT event is never observed. The reaction appears to be initiated by an ET event for the majority of the tested amines which included tertiary aliphatic and aromatic amines as well as a cyclic and a secondary amine. For a series of N,N-dimethylanilines the reaction efficiency for the ET activated pathways was found to correlate with the ionization energy of the amine. A stepwise pathway accounts for the C-H bond activation resulting in the formal HT product, namely a primary ET process forming A*+, which is deprotonated at the alpha-C-H bond forming an N-methyl-N-arylaminomethyl radical, A(-H)*, readily oxidized to the iminium ion, [A(-H)]+. The kinetic isotope effect (KIE) for proton transfer (PT) increases as the acidity of the amine radical cation increases and the PT reaction to the base, the ferryl group of (TPFPP)Fe(IV)=O, approaches thermoneutrality. The ET reaction displayed by 1 with gaseous N,N-dimethylaniline finds a counterpart in the ET reactivity of FeO+, reportedly a potent oxidant in the gas phase, and with the barrierless ET process for a model (P)*+ Fe(IV)=O species (where P is the porphine dianion) as found by theoretical calculations. Finally, the remarkable OAT reactivity of 1 with C6F5N(CH3)2 may hint to a mechanism along a route of diverse spin multiplicity.  相似文献   

10.
A bis-hydroxo-bridged diiron(III) complex and a bis-mu-oxo-bis-mu-hydroxo-bridged tetrairon(III) complex are isolated from the reaction of 2,6-bis((N,N'-bis-(2-picolyl)amino)methyl)-4-tert-butylphenol (Hbpbp) with iron perchlorate in acidic and neutral solutions respectively. The X-ray structure of the dinuclear complex [{(Hbpbp)Fe([mu-OH)}(2)](ClO(4))(4).2C(3)H(6)O (1.2C3H6O) shows that only one of the metal-binding cavities of each ligand is occupied by an iron(III) atom and two [Fe(Hbpbp)]3+ units are linked together by two hydroxo bridging groups to form a [Fe(III)-(mu-OH)](2) rhomb structure with Fe...Fe = 3.109(1)A. The non-coordinated tertiary amine of Hbpbp is protonated. Magnetic susceptibility measurements show a well-behaved weak antiferromagnetic coupling between the two Fe(III) atoms, J= -8 cm(-1). The tetranuclear complex [(bpbp)(2)Fe(4)(mu-O)(2)(mu-OH)(2)](ClO(4))(4)(2) was isolated as two different solvates .4CH(3)OH and .6H(2)O with markedly different crystal morphologies at pH ca. 6. Complex .4CH(3)OH forms red cubic crystals and .6H(2)O forms green crystalline platelets. The Fe(4)O(6) core of shows an adamantane-like structure: The six bridging oxygen atoms are provided by the two phenolato groups of the two bpbp(-) ligands, two bridging oxo groups and two bridging hydroxo groups. The hydroxo and oxo ligands could be distinguished on the basis of Fe-O bond lengths of the two different octahedral iron sites: Fe-mu-OH, 1.953(5), 2.013(5)A and Fe-mu-O, 1.803(5), 1.802(5)A. The difference in ligand environment is too small for allowing Mossbauer spectroscopy to distinguish between the two crystallographically independent Fe sites. The best fit to the magnetic susceptibility of .4CH(3)OH was achieved by using three coupling constants J(Fe-OPh-Fe)= 2.6 cm(-1), J(Fe-OH-Fe)=-0.9 cm(-1), J(Fe-O-Fe)=-101 cm(-1) and iron(III) single ion ZFS (|D|= 0.15 cm(-1)).  相似文献   

11.
Hydroxyethylphosphonate dioxygenase (HEPD) is a mononuclear nonheme iron enzyme that utilizes an O(2) molecule to cleave a C-C bond in 2-hydroxyethylphosphonate and produce hydroxymethylphosphonate (HMP) and formic acid. Density functional theory calculations were performed on an enzyme active-site model of HEPD to understand its catalytic mechanism. The reaction starts with H-abstraction from the C2 position of 2-HEP by a ferric superoxide-type (Fe(III)-OO(?-)) intermediate, in a similar manner to the H-abstraction in the reaction of the dinuclear iron enzyme myo-inositol oxygenase. The resultant Fe(II)-OOH intermediate may follow either a hydroperoxylation or hydroxylation pathway, the former process being energetically more favorable. In the hydroperoxylation pathway, a ferrous-alkylhydroperoxo intermediate is formed, and then its O-O bond is homolytically cleaved to yield a complex of ferric hydroxide with a gem-diol radical. Subsequent C-C bond cleavage within the gem-diol leads to formation of an R-CH(2)(?) species and one of the two products (i.e., formic acid). The R-CH(2)(?) then intramolecularly forms a C-O bond with the ferric hydroxide to provide the other product, HMP. The overall reaction pathway does not require the use of a high-valent ferryl intermediate but does require ferric superoxide and ferric hydroxide intermediates.  相似文献   

12.
An iron(II) complex with a pyridine-containing 14-membered macrocyclic (PyMAC) ligand L1 (L1 = 2,7,12-trimethyl-3,7,11,17-tetra-azabicyclo[11.3.1]heptadeca-1(17),13,15-triene), 1, was prepared and characterized. Complex 1 contains low-spin iron(II) in a pseudo-octahedral geometry as determined by X-ray crystallography. Magnetic susceptibility measurements (298 K, Evans method) and M?ssbauer spectroscopy (90 K, δ = 0.50(2) mm/s, ΔE(Q) = 0.78(2) mm/s) confirmed that the low-spin configuration of Fe(II) is retained in liquid and frozen acetonitrile solutions. Cyclic voltammetry revealed a reversible one-electron oxidation/reduction of the iron center in 1, with E(1/2)(Fe(III)/Fe(II)) = 0.49 V vs Fc(+)/Fc, a value very similar to the half-wave potentials of related macrocyclic complexes. Complex 1 catalyzed the epoxidation of cyclooctene and other olefins with H(2)O(2). Low-temperature stopped-flow kinetic studies demonstrated the formation of an iron(IV)-oxo intermediate in the reaction of 1 with H(2)O(2) and concomitant partial ligand oxidation. A soluble iodine(V) oxidant, isopropyl 2-iodoxybenzoate, was found to be an excellent oxygen atom donor for generating Fe(IV)-oxo intermediates for additional spectroscopic (UV-vis in CH(3)CN: λ(max) = 705 nm, ε ≈ 240 M(-1) cm(-1); M?ssbauer: δ = 0.03(2) mm/s, ΔE(Q) = 2.00(2) mm/s) and kinetic studies. The electrophilic character of the (L1)Fe(IV)═O intermediate was established in rapid (k(2) = 26.5 M(-1) s(-1) for oxidation of PPh(3) at 0 °C), associative (ΔH(?) = 53 kJ/mol, ΔS(?) = -25 J/K mol) oxidation of substituted triarylphosphines (electron-donating substituents increased the reaction rate, with a negative value of Hammet's parameter ρ = -1.05). Similar double-mixing kinetic experiments demonstrated somewhat slower (k(2) = 0.17 M(-1) s(-1) at 0 °C), clean, second-order oxidation of cyclooctene into epoxide with preformed (L1)Fe(IV)═O that could be generated from (L1)Fe(II) and H(2)O(2) or isopropyl 2-iodoxybenzoate. Independently determined rates of ferryl(IV) formation and its subsequent reaction with cyclooctene confirmed that the Fe(IV)-oxo species, (L1)Fe(IV)═O, is a kinetically competent intermediate for cyclooctene epoxidation with H(2)O(2) at room temperature. Partial ligand oxidation of (L1)Fe(IV)═O occurs over time in oxidative media, reducing the oxidizing ability of the ferryl species; the macrocyclic nature of the ligand is retained, resulting in ferryl(IV) complexes with Schiff base PyMACs. NH-groups of the PyMAC ligand assist the oxygen atom transfer from ferryl(IV) intermediates to olefin substrates.  相似文献   

13.
The reactivity of [HO-(tpa)Fe(V)=O] (TPA=tris(2-pyridylmethyl)amine), derived from O-O bond heterolysis of its [H(2)O-(tpa)Fe(III)-OOH] precursor, was explored by means of hybrid density functional theory. The mechanism for alkane hydroxylation by the high-valent iron-oxo species invoked as an intermediate in Fe(tpa)/H(2)O(2) catalysis was investigated. Hydroxylation of methane and propane by HO-Fe(V)=O was studied by following the rebound mechanism associated with the heme center of cytochrome P450, and it is demonstrated that this species is capable of stereospecific alkane hydroxylation. The mechanism proposed for alkane hydroxylation by HO-Fe(V)=O accounts for the experimentally observed incorporation of solvent water into the products. An investigation of the possible hydroxylation of acetonitrile (i.e., the solvent used in the experiments) shows that the activation energy for hydrogen-atom abstraction by HO-Fe(V)=O is rather high and, in fact, rather similar to that of methane, despite the similarity of the H-CH(2)CN bond strength to that of the secondary C-H bond in propane. This result indicates that the kinetics of hydrogen-atom abstraction are strongly affected by the cyano group and rationalizes the lack of experimental evidence for solvent hydroxylation in competition with that of substrates such as cyclohexane.  相似文献   

14.
N-bridged diiron tetra-tert-butylphthalocyanine activates H(2)O(2) to form anionic hydroperoxo complex [(Pc)Fe(IV)=N-Fe(III)(Pc)-OOH](-) prone to heterolytic cleavage of O-O bond with the release of OH(-) and formation of neutral diiron oxo phthalocyanine cation radical complex, PcFe(IV)=N-Fe(IV)(Pc(+)˙)=O. ESI-MS data showed stability of the Fe-N-Fe binuclear structure upon formation of this species, capable of oxidizing methane and benzene via O-atom transfer. The slow formation kinetics and the high reactivity preclude direct detection of this oxo complex by low temperature UV-vis spectroscopy. However, strong oxidizing properties and the results of EPR study support the formation of PcFe(IV)=N-Fe(IV)(Pc(+)˙)=O. Addition of H(2)O(2) at -80 °C led to the disappearance of iron EPR signal and to the appearance of the narrow signal at g = 2.001 consistent with the transient formation of PcFe(IV)=N-Fe(IV)(Pc(+)˙)=O. In the course of this study, another high valent diiron species was prepared in the solid state with 70% yield. The M?ssbauer spectrum shows two quadrupole doublets with δ(1) = -0.14 mm s(-1), ΔE(Q1) = 1.57 mm s(-1) and δ(2) = -0.10 mm s(-1), ΔE(Q2) = 2.03 mm s(-1), respectively. The negative δ values are consistent with formation of Fe(iv) states. Fe K-edge EXAFS spectroscopy reveals conservation of the diiron Fe-N-Fe core. In XANES, an intense 1s → 3d pre-edge feature at 7114.4 eV suggests formation of Fe(iv) species and attaching of one oxygen atom per two Fe atoms at the 1.90 ? distance. On the basis of M?ssbauer, EPR, EXAFS and XANES data this species was tentatively assigned as (Pc)Fe(IV)=N-Fe(IV)(Pc)-OH which could be formed from PcFe(IV)=N-Fe(IV)(Pc(+)˙)=O by hydrogen atom abstraction from a solvent molecule. Thus, despite unfavourable kinetics, we succeeded in the preparation of the first dirion(iv) phthalocyanine complex with oxygen ligand, generated in the (Pc)Fe(IV)=N-Fe(III)(Pc) - H(2)O(2) system capable of oxidizing methane.  相似文献   

15.
The Fe(II)- and alpha-ketoglutarate-dependent dioxygenases catalyze hydroxylation reactions of considerable biomedical and environmental significance. Recently, the first oxidized iron intermediate in the reaction of a member of this family, taurine:alpha-ketoglutarate dioxygenase (TauD), was detected and shown to be a high-spin Fe(IV) complex. In this study we have used X-ray absorption spectroscopy to demonstrate the presence of a short (1.62 A) interaction between the iron and one of its ligands in the Fe(IV) intermediate but not in the Fe(II) starting complex. The detection of this interaction strongly corroborates the hypothesis that the intermediate contains an Fe=O structural motif.  相似文献   

16.
We have characterized the intermediates formed in the peroxidase cycle of the multifunctional heme-containing enzyme KatG of M. tuberculosis. Selected Trp variants from the heme proximal (W321F) and distal (W107F and W91F) sides were analyzed together with the wild-type enzyme with regard to the reaction with peroxyacetic acid and hydrogen peroxide (in the catalase-inactive W107F). The 9 GHz EPR spectrum of the enzyme upon reaction with peroxyacetic acid showed the contribution of three protein-based radical species, two Trp* and a Tyr*, which could be discerned using a combined approach of multifrequency Electron Paramagnetic Resonance (EPR) spectroscopy with selective deuterium labeling of tryptophan and tyrosine residues and site-directed mutagenesis. Trp321, a residue in H-bonding interactions with the iron through Asp381 and the heme axial ligand His270, was identified as one of the radical sites. The 9 GHz EPR signal of the Trp321 radical species was consistent with an exchange-coupled species similar to the oxoferryl-Trp radical intermediate in cytochrome c peroxidase. On the basis of the possibility of distinguishing among the different radical intermediates of the peroxidase cycle in M. tuberculosis KatG (MtKatG), we used EPR spectroscopy to monitor the reactivity of the enzyme and its W321F variant with isoniazid, the front-line drug used in the treatment of tuberculosis. The EPR experiments on the W321F variant preincubated with isoniazid allowed us to detect the short-lived [Fe(IV)=O Por*+] intermediate. Our results showed that neither the [Fe(IV)=O Por*+] nor the [Fe(IV)=O Trp321*+] intermediates were the reactive species with isoniazid. Accordingly, the subsequent intermediate (most probably the other Trp*) is proposed to be the oxidizing species. Our findings demonstrate that the protein-based radicals formed as alternative intermediates to the [Fe(IV)=O Por*+] can play the role of cofactors for substrate oxidation in the peroxidase cyle of KatGs.  相似文献   

17.
The reaction mechanism for dioxygen activation in 2-oxoglutarate-dependent enzymes has been studied by means of hybrid density functional theory. The results reported here support a mechanism in which all chemical transformations take place on a quintet potential-energy surface. More specifically, the activated dioxygen species attacks the carbonyl group of the co-substrate producing the Fe(II)-persuccinate-CO(2) complex, which readily releases the carbon dioxide molecule. The step in which the Fe(II)-peracid-CO(2) complex is formed is found to be rate-limiting and irreversible. Subsequent heterolysis of the Obond;O bond in the Fe(II)-persuccinate complex proceeds in two one-electron steps and produces the high-valent iron-oxo species Fe(IV)dbond;O, which is most likely to be responsible for oxidative reactions catalyzed by 2-oxoglutarate-dependent enzymes. The concerted pathway for simultaneous Obond;O and Cbond;C bond cleavage on the septet potential-energy surface is found to be less favorable. The relative stability of different forms of the active iron-oxo species is assessed, and the quintet five-coordinate complex is found to be most stable.  相似文献   

18.
A detailed density functional theory examination of the reaction of an iron porphyrin chlorite dismutase model complex with chlorite was performed. We find that the molecular oxygen production observed occurs via the formation of η(1)-Fe(III) chlorite species, followed by the formation of O═Fe(IV) (compound II) and chlorine monoxide through homolytic bond cleavage. Chlorine monoxide then rebounds to form Fe(III)-peroxyhypochlorite followed by subsequent loss of chloride and loss of dioxygen accompanied by spin conversion to produce the Fe(III) complex and complete the catalytic cycle.  相似文献   

19.
The reaction of TEMPO with the iron(I) synthon PhB(MesIm)(3)Fe(COE) leads to formation of the κ(1)-TEMPO complex PhB(MesIm)(3)Fe(TEMPO). Structural and spectroscopic data establish the complex contains divalent iron bound to a nitroxido anion and is isoelectronic to an iron(II) peroxo complex. Thermolysis of the complex results in N-O bond homolysis, leading to the formation of an iron(III) oxo intermediate. The oxo intermediate is active in oxygen atom transfer reactions and can be trapped by the triphenylmethyl radical to give the iron(II) alkoxo complex PhB(MesIm)(3)Fe(OCPh(3)).  相似文献   

20.
Hirao H  Li F  Que L  Morokuma K 《Inorganic chemistry》2011,50(14):6637-6648
It has recently been shown that the nonheme oxoiron(IV) species supported by the 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane ligand (TMC) can be generated in near-quantitative yield by reacting [Fe(II)(TMC)(OTf)(2)] with a stoichiometric amount of H(2)O(2) in CH(3)CN in the presence of 2,6-lutidine (Li, F.; England, J.; Que, L., Jr. J. Am. Chem. Soc. 2010, 132, 2134-2135). This finding has major implications for O-O bond cleavage events in both Fenton chemistry and nonheme iron enzymes. To understand the mechanism of this process, especially the intimate details of the O-O bond cleavage step, a series of density functional theory (DFT) calculations and analyses have been carried out. Two distinct reaction paths (A and B) were identified. Path A consists of two principal steps: (1) coordination of H(2)O(2) to Fe(II) and (2) a combination of partial homolytic O-O bond cleavage and proton-coupled electron transfer (PCET). The latter combination renders the rate-limiting O-O cleavage effectively a heterolytic process. Path B proceeds via a simultaneous homolytic O-O bond cleavage of H(2)O(2) and Fe-O bond formation. This is followed by H abstraction from the resultant Fe(III)-OH species by an ?OH radical. Calculations suggest that path B is plausible in the absence of base. However, once 2,6-lutidine is added to the reacting system, the reaction barrier is lowered and more importantly the mechanistic path switches to path A, where 2,6-lutidine plays an essential role as an acid-base catalyst in a manner similar to how the distal histidine or glutamate residue assists in compound I formation in heme peroxidases. The reaction was found to proceed predominantly on the quintet spin state surface, and a transition to the triplet state, the experimentally known ground state for the TMC-oxoiron(IV) species, occurs in the last stage of the oxoiron(IV) formation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号