首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The reactions of [[M(mu-OMe)(cod)](2)] (M = Rh, Ir; cod = 1,5- cyclooctadiene) with p-tolylamine, alpha-naphthylamine, and p-nitroaniline gave complexes with mixed-bridging ligands, [[M(cod)](2)(mu-NHAr)(mu-OMe)]. Similarly, the related complexes [[Rh(cod)](2)(mu-NHAr)(mu-OH)] were prepared from the reactions of [[Rh(mu-OH)(cod)](2)] with p-tolylamine, alpha-naphthylamine, and p-nitroaniline. The reactions of [[Rh(mu-OR)(cod)](2)] (R = H, Me) with o-nitroaniline gave the mononuclear complex [Rh(o-NO(2)C(6)H(4)NH)(cod)]. The syntheses of the amido complexes involve a proton exchange reaction from the amines to the methoxo or hydroxo ligands and the coordination of the amide ligand. These reactions were found to be reversible for the dinuclear complexes. The structure of [[Rh(cod)](2)(mu-NH[p-NO(2)C(6)H(4)])(mu-OMe)] shows two edge-shared square-planar rhodium centers folded at the edge with an anti configuration of the bridging ligands. The complex [[Rh(cod)](2)(mu-NH[alpha-naphthyl])(mu-OH)] cocrystallizes with [[Rh(mu-OH)(cod)](2)] and THF, forming a supramolecular aggregate supported by five hydrogen bridges in the solid state. In the mononuclear [Rh(o-NO(2)C(6)H(4)NH)(cod)] complex the o-nitroamido ligand chelates the rhodium center through the amido nitrogen and an oxygen of the nitro group.  相似文献   

2.
The oxidation reaction of M(tpfc) [M = Mn or Cr and tpfc = tris(pentafluorophenyl)corrole] with aryl azides under photolytic or thermal conditions gives the first examples of mononuclear imido complexes of manganese(V) and chromium(V). These complexes have been characterized by NMR, mass spectrometry, UV-vis, EPR, elemental analysis, and cyclic voltammetry. Two X-ray structures have been obtained for Mn(tpfc)(NMes) and Cr(tpfc)(NMes) [Mes = 2,4,6-(CH(3))(3)C(6)H(2)]. Short metal-imido bonds (1.610 and 1.635 Angstroms) as well as nearly linear M-N-C angles are consistent with triple M triple-bond NR bond formation. The kinetics of nitrene [NR] group transfer from manganese(V) corroles to various organic phosphines have been defined. Reduction of the manganese(V) corrolato complex affords phosphine imine and Mn(III) with reaction rates that are sensitive to steric and electronic elements of the phosphine substrate. An analogous manganese complex with a variant corrole ligand containing bromine atoms in the beta-pyrrole positions, Mn(Br(8)tpfc)(NAr), has been prepared and studied. Its reaction with PEt(3) is 250x faster than that of the parent tpfc complex, and its Mn(V/IV) couple is shifted by 370 mV to a more positive potential. The EPR spectra of chromium(V) imido corroles reveal a rich signal at ambient temperature consistent with Cr(V) triple-bond NR (d(1), S = 1/2) containing a localized spin density in the d(xy) orbital, and an anisotropic signal at liquid nitrogen temperature. Our results demonstrate the synthetic utility of organic aryl azides in the preparation of mononuclear metal imido complexes previously considered elusive, and suggest strong sigma-donation as the underlying factor in stabilizing high-valent metals by corrole ligands.  相似文献   

3.
Binuclear beta-diketonatoruthenium(III) complexes [[Ru(acac)(2)](2)(tae)], [[Ru(phpa)(2)](2)(tae)], and [(acac)(2)Ru(tae)Ru(phpa)(2)] and binuclear and mononuclear bipyridine complexes [[Ru(bpy)(2)](2)(tae)](PF(6))(2) and [Ru(bpy)(2)(Htae)]PF(6) (acac = 2,4-pentanedionate ion, phpa = 2,2,6,6-tetramethyl-3,5-heptanedionate ion, tae = 1,1,2,2-tetraacetylethanate dianion, and bpy = 2,2'-bipyridine) were synthesized. The new complexes have been characterized by (1)H NMR, MS, and electronic spectral data. Crystal and molecular structures of [[Ru(acac)(2)](2)(tae)] have been solved by single-crystal X-ray diffraction studies. Crystal data for the meso isomer of [[Ru(acac)(2)](2)(tae)] have been confirmed by the dihedral angle result that two acetylacetone units of the bridging tae ligand are almost perpendicular to one another. A detailed investigation on the electrochemistry of the binuclear complexes has been carried out. The electrochemical behavior details of the binuclear complexes have been compared with those of the mononuclear complexes obtained from the half-structures of the corresponding binuclear complexes. Studies on the effects of solvents on the mixed-valence states of Ru(II)-Ru(III) and Ru(III)-Ru(IV) complexes have been carried out by various voltammetric and electrospectroscopic techniques. A correlation between the comproportionation constant (K(c)) and the donor number of the solvent has been obtained. The K(c) values for the binuclear complexes have been found to be low because of the fact that two acetylacetone units of the bridging tae ligand are not in the same plane, as revealed by the crystal structure of [[Ru(acac)(2)](2)(tae)].  相似文献   

4.
The photoexcited states of two 5,10,15-tris(pentafluorophenyl)corroles (tpfc), hosting Rh(III) in their core, namely Rh(pyr)(PPh 3)(tpfc) and Rh(PPh 3)(tpfc), have been studied by time-resolved electron paramagnetic resonance (TREPR) combined with pulsed laser excitation. Using the transient nutation technique, the spin polarized spectra are assigned to photoexcited triplet states. The spectral widths observed for the two Rh(III) corroles crucially depend on the axial ligands at the Rh(III) metal ion. In case of Rh(PPh 3)(tpfc), the TREPR spectra are found to extend over 200 mT, which exceeds the spectral width of non-transition-metal corroles by more than a factor of 3. Moreover, the EPR lines of the Rh(III) corroles are less symmetric than those of the non-transition-metal corrroles. The peculiarities in the TREPR spectra of the Rh(III) corroles can be rationalized in terms of strong spin-orbit coupling (SOC) associated with the transition-metal character of the Rh(III) ion. It is assumed that SOC in the photoexcited Rh(III) corroles effectively admixes metal centered (3)dd-states to the corrole centered (3)pipi*-states detected in the TREPR experiments. This admixture leads to an increased zero-field splitting and a large g-tensor anisotropy as manifested by the excited Rh(III) corroles.  相似文献   

5.
Manganese(V) imido complexes of 5,10,15-tris(pentafluorophenyl)corrole (H(3)tpfc) can be prepared by the reaction of Mn(III)(tpfc) and organic nitrene generated from either photolytic or thermal activation of organic azides. The terminal imido complexes of manganese(V) were among the first structurally characterized examples of Mn(V) terminal imido complexes in the literature. They feature a short Mn≡N triple bond and a nearly linear M[triple bond, length as m-dash]N-C angle. The ground state of (tpfc)Mn(V)(NAr) is singlet. Contrary to expectations, arylimido complexes of manganese(V) were stable to moisture and did not undergo [NR] group transfer to olefins. Manganese(V) imido corrole with an activated tosyl imido ligand was prepared from iodoimine (ArINTs) and manganese(III) corrole. The resulting complex (tpfc)Mn(NTs) is paramagnetic (S = 1), hydrolyzes to (tpfc)Mn(O) in the presence of water, abstracts hydrogen atoms from benzylic C-H bonds, and catalyzes aziridination of alkenes. Mechanistic studies on the aziridination and hydrogen atom transfer reactions are reviewed. This perspective also describes the reaction chemistry of the heme enzyme chlorite dismutase, the mechanism by which dioxygen is formed on a single-metal site, and recent advances in functional modelling of this enzyme. We also compare the reactivity of water-soluble iron versus manganese porphyrins towards the chlorite anion.  相似文献   

6.
7.
Oxidative addition of the disulfide compounds naphtho[1,8-cd][1,2]dithiole, 2-tert-butylnaptho[1,8-cd][1,2]dithiole, 2,7-di-tert-butylnaphtho[1,8-cd][1,2]dithiole, 4,5-dithiaacephenanthrylene and the thio/sulfinyl and thio/sulfonyl compounds naphtho[1,8-cd][1,2]dithiole 1-oxide, and naphtho[1,8-cd][1,2]dithiole 1,1-dioxide respectively to [[Ir(mu-Cl)(cod)](2)] give dinuclear Ir-Ir bonded Ir(II) compounds [[IrCl(cod)](2)(mu(2)-1,8-S(2)-nap)] 1, [[IrCl(cod)](2)(mu(2)-1,8-S(2)-2-(t)Bu-nap)] 2, [[IrCl(cod)](2)(mu(2)-1,8-S(2)-2,7-di-(t)Bu-nap)]] 3, [[IrCl(cod)](2)(mu(2)-4,5-S(2)-phenan)] 4, [[IrCl(cod)](2)(mu(2)-1-S,8-[S(O)]-nap)] 5 and [[IrCl(cod)](2)(mu(2)-1-S,8-[S(O)(2)]-nap)] 6 where the di-sulfur ligands act as bridges between the two Ir(II) metal centres. The compounds were obtained in moderate to good yields as orange or deep red powders or crystalline solids. Five of the new complexes have been structurally characterised and were found to have Ir-Ir bond lengths in the range 2.7630(8) to 2.8113(11) A.  相似文献   

8.
This work describes a study of Ru(II) and Os(II) polypyridyl complexes of the symmetrical, fused-aromatic bridging ligand dibenzoeilatin (1). The synthesis, purification, and structural characterization by NMR of the mononuclear complexes [Ru(bpy)(2)(dbneil)](2+) (2), [Ru(tmbpy)(2)(dbneil)](2+) (3), and [Os(bpy)(2)(dbneil)](2+) (4), the homodinuclear complexes [[Ru(bpy)(2)](2)[micro-dbneil]](4+) (5), [[Ru(tmbpy)(2)](2)[micro-dbneil]](4+) (6), and [[Os(bpy)(2)](2)[micro-dbneil]](4+) (7), and the heterodinuclear complex [[Ru(bpy)(2)][micro-dbneil][Os(bpy)(2)]](4+) (8) are described, along with the crystal structures of 4, 6, and 7. Absorption spectra of the mononuclear complexes feature a low-lying MLCT band around 600 nm. The coordination of a second metal fragment results in a dramatic red shift of the MLCT band to beyond 700 nm. Cyclic and square wave voltammograms of the mononuclear complexes exhibit one reversible metal-based oxidation, as well as several ligand-based reduction waves. The first two reductions, attributed to reduction of the dibenzoeilatin ligand, are substantially anodically shifted compared to [M(bpy)(3)](2+) (M = Ru, Os), consistent with the low-lying pi orbital of dibenzoeilatin. The dinuclear complexes exhibit two reversible, well-resolved, metal-centered oxidation waves, despite the chemical equivalence of the two metal centers, indicating a significant metal-metal interaction mediated by the conjugated dibenzoeilatin ligand. Luminescence spectra, quantum yield, and lifetime measurements at room temperature in argon-purged acetonitrile have shown that the complexes exhibit (3)MLCT emission, which occurs in the IR-region between 950 and 1300 nm. The heterodinuclear complex 8 exhibits luminescence only from the Ru-based fragment, the intensity of which is less than 1% of that observed in the corresponding homodinuclear complex 5; no emission from the Os-based unit is observed, and an intramolecular quenching constant of k(q) > or = 3 x10(9) s(-)(1) is evaluated. The nature of the quenching process is briefly discussed.  相似文献   

9.
Hirano T  Oi T  Nagao H  Morokuma K 《Inorganic chemistry》2003,42(20):6575-6583
cis-[Ru(NO)Cl(pyca)(2)] (pyca = 2-pyridinecarboxylato), in which the two pyridyl nitrogen atoms of the two pyca ligands coordinate at the trans position to each other and the two carboxylic oxygen atoms at the trans position to the nitrosyl ligand and the chloro ligand, respectively (type I shown as in Chart 1), reacted with NaOCH(3) to generate cis-[Ru(NO)(OCH(3))(pyca)(2)] (type I). The geometry of this complex was confirmed to be the same as the starting complex by X-ray crystallography: C(13.5)H(13)N(3)O(6.5)Ru; monoclinic, P2(1)/n; a = 8.120(1), b = 16.650(1), c = 11.510(1) A; beta = 99.07(1) degrees; V = 1536.7(2) A(3); Z = 4. The cis-trans geometrical change reaction occurred in the reactions of cis-[Ru(NO)(OCH(3))(pyca)(2)] (type I) in water and alcohol (ROH, R = CH(3), C(2)H(5)) to form [[trans-Ru(NO)(pyca)(2)](2)(H(3)O(2))](+) (type V) and trans-[Ru(NO)(OR)(pyca)(2)] (type V). The reactions of the trans-form complexes, trans-[Ru(NO)(H(2)O)(pyca)(2)](+) (type V) and trans-[Ru(NO)(OCH(3))(pyca)(2)] (type V), with Cl(-) in hydrochloric acid solution afforded the cis-form complex, cis-[Ru(NO)Cl(pyca)(2)] (type I). The favorable geometry of [Ru(NO)X(pyca)(2)](n)(+) depended on the nature of the coexisting ligand X. This conclusion was confirmed by theoretical, synthetic, and structural studies. The mono-pyca-containing nitrosylruthenium complex (C(2)H(5))(4)N[Ru(NO)Cl(3)(pyca)] was synthesized by the reaction of [Ru(NO)Cl(5)](2)(-) with Hpyca and characterized by X-ray structural analysis: C(14)H(24)N(3)O(3)Cl(3)Ru; triclinic, Ponemacr;, a = 7.631(1), b = 9.669(1), c = 13.627(1) A; alpha = 83.05(2), beta = 82.23(1), gamma = 81.94(1) degrees; V = 981.1(1) A(3); Z = 2. The type II complex of cis-[Ru(NO)Cl(pyca)(2)] was synthesized by the reaction of [Ru(NO)Cl(3)(pyca)](-) or [Ru(NO)Cl(5)](2)(-) with Hpyca and isolated by column chromatography. The structure was determined by X-ray structural analysis: C(12)H(8)N(3)O(5)ClRu; monoclinic, P2(1)/n; a = 10.010(1), b = 13.280(1), c = 11.335(1) A; beta = 113.45(1) degrees; V = 1382.4(2) A(3); Z = 4.  相似文献   

10.
Four free-base corroles with electron-donating or electron-withdrawing groups on the para or 2 through 6-positons of the meso phenyl rings were prepared via either Paolesse or Gross conditions and investigated for their absorption and emission properties. The triaryl corroles 5,10,15-triphenylcorrole, 5,10,15-tris(pentafluorophenyl)corrole, 5,10,15-tris(p-nitrophenyl)corrole, and 5,10,15-tris(p-methoxyphenyl)corrole were examined. Absorption, steady-state, and time-resolved fluorescence measurements were performed on all compounds in both nonpolar (dichloromethane) and polar (dimethylacetamide) solvents. The experimental evidence points to hydrogen bonding with an internal N-H group as the most likely factor in the solvent-dependent photophysical behavior of these corroles, that is also highly dependent upon substitution.  相似文献   

11.
Gut D  Goldberg I  Kol M 《Inorganic chemistry》2003,42(11):3483-3491
The potential of the heptacyclic aromatic alkaloid eilatin (1), that features two nonequivalent binding sites, to serve as a bridging ligand is reported. The nonequivalency of the binding sites allowed the selective synthesis of both mono- and dinuclear complexes. The mononuclear Ru(II) complexes [Ru(dmbpy)(2)(eilatin)](2+) (2) and [Ru(tmbpy)(2)(eilatin)](2+) (3) in which eilatin selectively binds "head-on" were synthesized and employed as building blocks in the synthesis of the dinuclear complexes [[Ru(dmbpy)(2)](2)(mu-eilatin)](4+) (4) and [[Ru(tmbpy)(2)](2)(mu-eilatin)](4+) (5). Complete structure elucidation of the complexes in solution was accomplished by 1D and 2D NMR techniques. The X-ray structures of the mononuclear complex 3 and of the two dinuclear complexes 4 and 5 were solved, and absorption spectra and electrochemical properties of the complexes were explored. Both dinuclear complexes formed as racemic mixtures in a 3:1 diastereoisomeric ratio, the major isomer being the heterochiral one (Delta Lambda/Lambda Delta) as revealed by crystallography. The mononuclear complexes feature an exceptionally low energy MLCT band around 600 nm that shifted to over 700 nm upon the binding of the second Ru(II) center. The mononuclear complexes show one reversible oxidation and several reversible reduction waves, the first two reductions being substantially anodically shifted in comparison with [Ru(bpy)(3)](2+), attributed to the reduction of eilatin, and consistent with its low lying pi* orbital. The dinuclear complexes follow the same reduction trend, exhibiting several reversible reduction waves, and two reversible well-resolved metal centered oxidations due to the nonequivalent binding sites and to a significant metal-metal interaction mediated by the bridging eilatin.  相似文献   

12.
In search of potential anticancer drug candidates in ruthenium complexes, a series of mononuclear ruthenium complexes of the type [Ru(phen)(2)(nmit)]Cl(2) (Ru1), [Ru(bpy)(2)(nmit)]Cl(2) (Ru2), [Ru(phen)(2)(icpl)]Cl(2) (Ru3), Ru(bpy)(2)(icpl)]Cl(2) (Ru4) (phen=1,10-phenanthroline; bpy=2,2'-bipyridine; nmit=N-methyl-isatin-3-thiosemicarbazone, icpl=isatin-3-(4-Cl-phenyl)thiosemicarbazone) and [Ru(phen)(2)(aze)]Cl(2) (Ru5), [Ru(bpy)(2)(aze)]Cl(2) (Ru6) (aze=acetazolamide) and [Ru(phen)(2)(R-tsc)](ClO(4))(2) (R=methyl (Ru7), ethyl (Ru8), cyclohexyl (Ru9), 4-Cl-phenyl (10), 4-Br-phenyl (Ru11), and 4-EtO-phenyl (Ru12), tsc=thiosemicarbazone) were prepared and characterized by elemental analysis, FTIR, (1)H-NMR and FAB-MS. Effect of these complexes on the growth of a transplantable murine tumor cell line (Ehrlich Ascites Carcinoma) and their antibacterial activity were studied. In cancer study the effect of hematological profile of the tumor hosts have also been studied. In the cancer study, the complexes Ru1-Ru4, Ru10 and Ru11 have remarkably decreased the tumor volume and viable ascitic cell count as indicated by trypan blue dye exclusion test (p<0.05). Treatment with the ruthenium complexes prolonged the lifespan of Ehrlich Ascites Carcinoma (EAC) bearing mice. Tumor inhibition by the ruthenium chelates was followed by improvements in hemoglobin, RBC and WBC values. All the complexes showed antibacterial activity, except Ru5 and Ru6. Thus, the results suggest that these ruthenium complexes have significant antitumor property and antibacterial activity. The results also reflect that the drug does not adversely affect the hematological profiles as compared to that of cisplatin on the host.  相似文献   

13.
合成了两个中位苯基上具有甲氧基取代基的铜咔咯配合物(Tp-OCH3PC)Cu和(To,p-(OCH3)2PC)Cu,通过紫外-可见、红外光谱、元素分析、核磁共振及质谱对它们进行了表征。研究了配合物在非水溶剂中的电子顺磁共振、电化学和光谱电化学性质,结果表明无论在固体状态还是在非水溶剂中,配合物的中心金属离子均为三价铜Cu(Ⅲ),在给定的溶剂中Cu(Ⅲ)可以发生可逆的还原反应生成Cu(Ⅱ),也可以被可逆氧化为Cu(Ⅲ)的阳离子自由基。探讨了甲氧基取代基以及溶剂对配合物的紫外-可见光谱和氧化还原电位的影响。  相似文献   

14.
We report the synthesis of free 1,6,7,12-tetraazaperylene (tape). Tape was obtained from 1,1'-bis-2,7-naphthyridine by potassium promoted cyclization followed by oxidation with air. Mono- and dinuclear ruthenium(II) 1,6,7,12-tetraazaperylene complexes of the general formulas [Ru(L-L)(2)(tape)](PF(6))(2), [1](PF(6))(2)-[5](PF(6))(2), and [{Ru(L-L)(2)}(2)(μ-tape)](PF(6))(4), [6](PF(6))(4)-[10](PF(6))(4), with{L-L = phen, bpy, dmbpy (4,4'-dimethyl-2,2'-bipyridine), dtbbpy (4,4'-ditertbutyl-2,2'-bipyridine) and tmbpy (4,4'5,5'-tetramethyl-2,2'-bipyridine)}, respectively, were synthesized. The X-ray structures of tape·2CHCl(3) and the mononuclear complexes [Ru(bpy)(2)(tape)](PF(6))(2)·0.5CH(3)CN·0.5toluene, [Ru(dmbpy)(2)(tape)](PF(6))(2)·2toluene and [Ru(dtbbpy)(2)(tape)](PF(6))(2)·3acetone·0.5H(2)O were solved. The UV-vis absorption spectra and the electrochemical behavior of the ruthenium(ii) tape complexes were explored and compared with the data of the analogous dibenzoeilatin (dbneil), 2,2'-bipyrimidine (bpym) and tetrapyrido[3,2-a:2',3'-c:3',2'-h:2',3'-j]phenazin (tpphz) species.  相似文献   

15.
Treatment of [[M(mu-Cl)(diolefin)](2)] with the lithium salts of primary and secondary amines (LiNRR') in diethyl ether affords the complexes [[M(mu-NRR')(diolefin)](2)] (M=Rh, Ir; diolefin=1,5-cyclooctadiene (cod), tetrafluorobenzobarrelene (tfb); R'=H, R=tBu, Ph, 4-MeC(6)H(4); R=R'=Ph, 4-MeC(6)H(4)). Mixed-bridged chloro/amido complexes are intermediates in these syntheses, two of which, [[Rh(cod)](2)(mu-NHR)(mu-Cl)] (R=tBu, 4-MeC(6)H(4)), have been isolated. Replacement of the diolefin ligands by carbon monoxide or tert-butyl isocyanide in selected compounds takes place with retention of the binuclear structure to give the corresponding complexes [[M(mu-4-HNC(6)H(4)Me)(CO)(2)](2)], [[Rh(mu-4-HNC(6)H(4)Me)(CNtBu)(2)](2)] (12), and [[Rh(mu-NPh(2))(CNtBu)(2)](2)] (13). Single-crystal X-ray diffraction analyses of the complexes [[Rh(mu-NRR')(cod)](2)] (R'=H, R=4-MeC(6)H(4) (3); R=R'=4-MeC(6)H(4) (5)), 12, and 13 have shown that the conformation of the "RhN(2)Rh" four-membered metallacycle is planar in 5 and folded in 3, 12, and 13. The complexes with primary amides, 3 and 12, were found to exist as the syn,endo stereoisomers. The fluxionality of the complexes with secondary amides is due to rotation of the aromatic substituents about the N-C(ipso) bond and, in the case of 13, to the inversion of the "RhN(2)Rh" metallacycle as well. The complexes [[M(mu-NHR)(cod)](2)] (R=Ph, 4-MeC(6)H(4)) were found to exist as isomeric mixtures in solution, the syn/anti ratio being 2:3 for the rhodium derivatives and 1:1 for their iridium counterparts. Again, the motion detected was due to rotation of the aromatic substituents, and could be frozen only in the case of the syn isomers. The complex [[Rh(mu-NHtBu)(cod)](2)] with aliphatic amido ligands was found to be the anti folded isomer and proved to be nonfluxional. The most common conformation of the "RhN(2)Rh" metallacycle in these compounds is folded, and the preferred configuration varies from syn for the less encumbered compounds to anti on increasing the bulkiness of the bridging and ancillary ligands.  相似文献   

16.
The tetradentate ligands 1,8-bis(pyrid-2-yl)-3,6-dithiaoctane (pdto) and 1,8-bis(benzimidazol-2-yl)-3,6-dithiaoctane (bbdo) form the complexes [Ru(pdto)(mu-Cl)](2)(ClO(4))(2) 1 and [Ru(bbdo)(mu-Cl)](2)(ClO(4))(2) 2 respectively. The new di-mu-chloro dimers 1 and 2 undergo facile symmetrical bridge cleavage reactions with the diimine ligands 2,2'-bipyridine (bpy) and dipyridylamine (dpa) to form the six-coordinate complexes [Ru(pdto)(bpy)](ClO(4))(2) 3, [Ru(bbdo)(bpy)](ClO(4))(2) 4, [Ru(pdto)(dpa)](ClO(4))(2) 5 and [Ru(bbdo)(dpa)](ClO(4))(2) 6 and with the triimine ligand 2,2':6,2'-terpyridine (terpy) to form the unusual seven-coordinate complexes [Ru(pdto)(terpy)](ClO(4))(2) 7 and [Ru(bbdo)(terpy)](ClO(4))(2) 8. In 1 the dimeric cation [Ru(pdto)(mu-Cl)](2)(2+) is made up of two approximately octahedrally coordinated Ru(II) centers bridged by two chloride ions, which constitute a common edge between the two Ru(II) octahedra. Each ruthenium is coordinated also to two pyridine nitrogen and two thioether sulfur atoms of the tetradentate ligand. The ligand pdto is folded around Ru(II) as a result of the cis-dichloro coordination, which corresponds to a "cis-alpha" configuration [DeltaDelta/LambdaLambda(rac) diastereoisomer] supporting the possibility of some attractive pi-stacking interactions between the parallel py rings at each ruthenium atom. The ruthenium atom in the complex cations 3a and 4 exhibit a distorted octahedral coordination geometry composed of two nitrogen atoms of the bpy and the two thioether sulfur and two py/bzim nitrogen atoms of the pdto/bbdo ligand, which is actually folded around Ru(II) to give a "cis-alpha" isomer. The molecule of complex 5 contains a six-coordinated ruthenium atom chelated by pdto and dpa ligands in the expected distorted octahedral fashion. The (1)H and (13)C NMR spectral data of the complexes throw light on the nature of metal-ligand bonding and the conformations of the chelate rings, which indicates that the dithioether ligands maintain their tendency to fold themselves even in solution. The bis-mu-chloro dimers 1 and 2 show a spin-allowed but Laporte-forbidden t(2g)(6)((1)A(1g))--> t(2g)(5) e(g)(1)((1)T(1g), (1)T(2g)) d-d transition. They also display an intense Ru(II) dpi--> py/bzim (pi*) metal-to-ligand charge transfer (MLCT) transition. The mononuclear complexes 3-8 exhibit dpi-->pi* MLCT transitions in the range 340-450 nm. The binuclear complexes 1 and 2 exhibit a ligand field ((3)MC) luminescence even at room temperature, whereas the mononuclear complexes 3 and 4 show a ligand based radical anion ((3)MLCT) luminescence. The binuclear complexes 1 and 2 undergo two successive oxidation processes corresponding to successive Ru(II)/Ru(III) couples, affording a stable mixed-valence Ru(II)Ru(III) state (K(c): 1, 3.97 x 10(6); 2, 1.10 x 10(6)). The mononuclear complexes 3-7 exhibit only one while 8 shows two quasi-reversible metal-based oxidative processes. The coordinated 'soft' thioether raises the redox potentials significantly by stabilising the 'soft' Ru(II) oxidation state. One or two ligand-based reduction processes were also observed for the mononuclear complexes.  相似文献   

17.
Treatment of a thiolato-bridged Ru(II)Ag(I)Ru(II) trinuclear complex, [Ag{Ru(aet)(bpy)(2)}(2)](3+) (aet = 2-aminoethanthiolate; bpy = 2,2'-bipyridine), with NaI in aqueous ethanol under an aerobic condition afforded a mononuclear ruthenium(II) complex having an S-bonded sulfinato group, [1](+) ([Ru(aesi-N, S)(bpy)(2)](+) (aesi = 2-aminoethanesulfinate)). Similar treatment of optically active isomers of an analogous Ru(II)Ag(I)Ru(II) trinuclear complex, Δ(D)Δ(D)- and Λ(D)Λ(D)-[Ag{Ru(d-Hpen-O,S)(bpy)(2)}(2)](3+) (d-pen = d-penicillaminate), with NaI also produced mononuclear ruthenium(II) isomers with an S-bonded sulfinato group, Δ(D)- and Λ(D)-[2](+) ([Ru(d-Hpsi-O,S)(bpy)(2)](+) (d-psi = d-penicillaminesulfinate)), respectively, retaining the bidentate-O,S coordination mode of a d-Hpen ligand and the absolute configuration (Δ or Λ) about a Ru(II) center. On refluxing in water, the Δ(D) isomer of [2](+) underwent a linkage isomerization to form Δ(D)-[3] (+) ([Ru(d-Hpsi-N,S)(bpy)(2)](+)), in which a d-Hpsi ligand coordinates to a Ru(II) center in a bidentate-N,S mode. Complexes [1](+), Δ(D)- and Λ(D)-[2](+), and Δ(D)-[3](+) were fully characterized by electronic absorption, CD, NMR, and IR spectroscopies, together with single-crystal X-ray crystallography. The electrochemical properties of these complexes, which are highly dependent on the coordination mode of sulfinate ligands, are also described.  相似文献   

18.
Four new potentially polytopic nitrogen donor ligands based on the 1,3,5-triazine fragment, L(1)-L(4) (L(1) = 2-chloro-4,6-di(1H-pyrazol-1-yl)-1,3,5-triazine, L(2) = N,N'-bis(4,6-di(1H-pyrazol-1-yl)-1,3,5-triazin-2-yl)ethane-1,2-diamine, L(3) = 2,4,6-tris(tri(1H-pyrazol-1-yl)methyl)-1,3,5-triazine, and L(4) = 2,4,6-tris(2,2,2-tri(1H-pyrazol-1-yl)ethoxy)-1,3,5-triazine) have been synthesized and characterized. The X-ray crystal structure of L(3) confirms that its molecular nature consists of a 1,3,5-triazine ring bearing three tripodal tris(pyrazolyl) arms. L(1), L(2), and L(4) react with Cu(I), Cu(II), Pd(II) and Ag(I) salts yielding mono-, di-, and oligonuclear derivatives: [Cu(L(1))(Cy(3)P)]ClO(4), [{Ag(2)(L(2))}(CF(3)SO(3))(2)]·H(2)O, [Cu(2)(L(2))(NO(3))(2)](NO(3))(2)·H(2)O, [Cu(2)(L(2))(CH(3)COO)(2)](CH(3)COO)(2)·3H(2)O, [Pd(2)(L(2))(Cl)(4)]·2H(2)O, [Ru(L(2))(Cl)(OH)]·CH(3)OH, [Ag(3)(L(4))(2)](CF(3)SO(3))(3) and [Ag(3)(L(4))(2)](BF(4))(3). The interaction of L(3) with Ag(I), Cu(II), Zn(II) and Ru(II) complexes unexpectedly produced the hydrolysis of the ligand with formation, in all cases, of tris(pyrazolyl)methane (TPM) derivatives. In detail, the already known [Ag(TPM)(2)](CF(3)SO(3)) and [Cu(TPM)(2)](NO(3))(2), as well as the new [Zn(TPM)(2)](CF(3)SO(3))(2) and [Ru(TMP)(p-cymene)]Cl(OH)·2H(2)O complexes have been isolated. Single-crystal XRD determinations on the latter derivatives confirm their formulation, evidencing, for the Ru(II) complex, an interesting supramolecular arrangement of the anions and crystallization water molecules.  相似文献   

19.
Zdilla MJ  Abu-Omar MM 《Inorganic chemistry》2008,47(22):10718-10722
Hydrogen atom transfer (HAT) reactions from dihydroanthracene to ArINTs (Ar = 2- tert-butylsulfonyl)benzene and Ts = p-toluenesulfonyl) is catalyzed by Mn(tpfc) (tpfc = 5,10,15-tris(pentafluorophenyl)corrole). Kinetics of HAT was monitored by gas chromatography. Conversion to the major products anthracene, TsNH 2, and ArI is too fast to be explained by direct HAT from the terminal imido complex TsN=Mn(tpfc), which forms from the reaction of Mn(tpfc) with ArINTs. Steady-state kinetics, isotope effects, and variation of the initial catalyst form (Mn (III)(tpfc) vs TsN=Mn (V)(tpfc)) support a mechanism in which the active catalytic species is an adduct of manganese(III) with the oxidant, (ArINTs)Mn (III)(tpfc). This species was detected by rapid-scan stopped-flow absorption spectroscopy. Kinetic simulations demonstrated the viability of this mechanism in contrast to other proposals.  相似文献   

20.
A series of diruthenium(II), [Ru(2)(tidf)Cl(2)(H(2)O)(2)] x H(2)O, diiron(II) [Fe(2)(tidf)(MeOH)(4)](ClO(4))(2) and mixed ruthenium(II)-iron(II) [Ru(MeOH)(2)FeCl(H(2)O)(tidf)](ClO(4)) (tidf=a two compartment tetraiminediphenolate macrocycle) complexes were prepared and characterized by elemental analysis, FTIR, UV-vis, cyclic voltammetry and semi-empirical molecular mechanics calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号