首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The recombinant phytochrome of the moss Ceratodon purpureus (CP2) expressed in Saccharomyces cerevisiae and reconstituted with phycocyanobilin (PCB) was investigated using fluorescence spectroscopy. The pigment had an emission maximum at 670 nm at low temperature (85 K) and at 667 nm at room temperature (RT) and an excitation maximum at 650-652 nm at 85 K (excitation spectra could not be measured at RT). Both spectra had a half-band width of approx. 30-35 nm at 85 K. The fluorescence intensity revealed a steep temperature dependence with an activation energy of fluorescence decay (Ea) of 5.9-6.4 and 12.6-14.7 kJ mol(-1) in the interval from 85 to 210 K and from 210 to 275 K, respectively. The photochemical properties of CP2/PCB were characterised by the extent of the red-induced (lambda(a) = 639 nm) Pr conversion into the first photoproduct lumi-R at 85 K (gamma1) of approximately 0.07 and into Pfr at RT (gamma2) of approximately 0.7. From these characteristics, CP2/PCB can be attributed to the Pr" photochemical type with gamma1 < or = 0.05, which comprises the minor phyA fraction (phyA"), phyB, Adiantum phy1 and Synechocystis Cph1 in contrast to the major phyA' fraction (Pr' type with gamma1 = 0.5). Within the Pr" type, it is closer to phyA" than to phyB and Cph1.  相似文献   

2.
Abstract Fluorescence (F) emission spectra of the red-absorbing phytochrome form (Pr) at 85 K, temperature dependence of the F intensity and the extent of the Pr F changes in the phototransformation of Pr into the first stable photoproduct (lumi-R) at 85 K (γ1,) and into the far-red-absorbing form (Pfr) at 267 K (γ2) were investigated in etiolated shoots and roots of monocots (oat, maize, rice) and dicots (pea, cress). These characteristics monotonously changed as a function of the phytochrome content, [Ptot]: with its decrease to 3-5% of the maximal values, the F spectrum shifts from 686 nm to 682 nm, its half-band width rises from 22 nm to ca 25 nm, temperature dependence of Pr F changes its character, γ1, drops down from ca > 0.45 to ca 0.05-0.10 and γ2 from 0.80–0.82 to ≤0.70. These data were interpreted in terms of two different phytochromes whose relative concentration varies with [Ptot]: (1) a longer wavelength type with the F maximum at 686 nm, low activation energy of the photoreaction (Ea ≤ 3–4 kj/ mol) and high extent of the phototransformation at 85 K (0.49 ± 0.03) and at 267 K (ca 0.85) (Pra); (2) a shorter wavelength type practically inactive at 85 K with F maximum at 682 nm, higher Ea (ca 35 kj/mol) and lower extent of the Pr & Pfr phototransformation (≤0.70) (Pri). [Pra] widely varies in different parts of the seedlings (up to 100 times) and Pra dominates when [Ptot] is high. The [Pri] is much more constant (variations, <10 times), and it becomes the major one when [Ptot] drops down. The two species are likely to belong to the labile (type 1) and stable pools of pigment and not to be connected with the localization of the pigment in the cell since red-far-red preillu-mination, which is believed to bring about sequestering of the pigment, does not change their relative concentration and properties.  相似文献   

3.
Previously, two pools of phytochrome A (phyA' and phyA") have been detected by in situ low-temperature fluorescence spectroscopy and photochemistry; it was suggested that they might differ in the nature of their posttranslational modification. In order to verify this possibility Arabidopsis and rice (Oryza) phyA were expressed in yeast and the pigments were assembled in vivo with phycocyanobilin (PCB) and phytochromobilin (P phi B). The resulting recombinant phytochromes in the red-light-absorbing form (Pr) were characterized in the yeast cell by (1) the fluorescence emission spectra; (2) the temperature dependence of Pr fluorescence intensity and activation energy of fluorescence decay; and (3) the extent of photoconversion of Pr into photoproduct lumi-R (gamma 1) or far-red-light absorbing form (Pfr) (gamma 2). Both Arabidopsis phyA/PCB and Oryza phyA/P phi B had low gamma 1 of ca 0.05, allowing their attribution to the Pr" phenomenological type of phytochrome comprising phyA", phyB and cryptogam phytochromes. The spectroscopic properties of Oryza phyA/P phi B were also very close to phyA". However, both investigated holoproteins differed from phyA", both with respect to the character of temperature dependence of the fluorescence yield and activation energy. Thus, recombinant Oryza phyA/P phi B is similar but not identical to phyA". The data demonstrate that the low-abundance-fraction plant phyA (phyA") comes from the same gene as the major (phyA') fraction. Because both endogenous phyA fractions differ from the phytochrome expressed in yeast, they appear to be posttranslationally modified and/or bound to partner proteins or cellular substructures. However, the character of the presumed chemical modification is different in phyA' and phyA" and its extent is more profound in the case of the former.  相似文献   

4.
Abstract Comparative fluorescence and photochemical studies of phytochrome in etiolated seedlings of maize and in soluble and membrane-containing fractions isolated from them were camed out. The membrane fractions prepared in the absence of Mg2+ from etiolated coleoptiles contained 13% of total photoreversible phytochrome, which was readily solubilized by mild detergents. Its molecular size was indistinguishable from soluble phytochrome and equal to nondegraded maize phytochrome. Low-temperature fluorescence studies with intact tissue found that the position of the emission maximum at 85 K (λmax) and the extent of the phototransformation of the red-absorbing form (Pr) into the first stable photoproduct, lumi-R, at 85 K (γ1), varied in different parts of etiolated seedlings: λmax and γ1 reached their maximum values in the tips of coleoptiles and roots, 686 nm and 0.30–0.40, whereas the lowest values, 682 nm and ca 0.05, were observed in the root base. These parameters correlated well with those obtained for the pigment in the soluble and membrane-containing fractions: 684 and 680 nm, and 0.33 and 0.06, respectively. The extent of the Pr phototransformation into the far red-absorbing form (Pfr) (γ2) did not differ much: values of 0.80–0.85 and 0.70–0.75 correlated with the high and low values of γ1. These variations of the parameters were interpreted in agreement with our previous observations in terms of two phytochrome A species whose relative concentrations vary depending on the experimental conditions—the longer wavelength bulk light-labile species with high γ1 (Pr″), and the shorter wavelength minor light-stable species with low γ1 (Pr″). Close similarity between Pr’and the soluble phytochrome and between Pr″ and the membrane-bound phytochrome points to the possible origin of the native Pr’and PrPrime; species, thus providing evidence for the existence of membrane-bound pigment in the cell.  相似文献   

5.
Abstract— In vivo low-temperature (85 K) fluorescence spectroscopy has defined two phytochrome A (phyA) subpopulations, designated phyA' and phyA", in etiolated seedlings (V. A. Sineshchekov, J. Photochem. Photobiol. 28, 53–55, 1995). Phytochrome A' is the more abundant but light-labile species characterized by longer wavelength emission/absorption maxima (687/673 nm) and by a higher extent of the photoconversion of its red-absorbing form (Pr) into photoproduct (lumi-R) at 85 K (γ1≈ 0.5). Phytochrome A" is the minor but relatively light-stable species, characterized by shorter wavelength maxima (682/668 nm) and by a lower γ1 (<0.05). To help define domains within phyA responsible for these differences, the low-temperature spectral properties of transgenic tobacco expressing full-length (FL) oat phyA and C-and N-terminally truncated versions (CD [Δ786–1129] and NA [Δ7–69], respectively) were compared. Oat phytochrome expression was more pronounced than that of tobacco in the basal section of etiolated seedlings following 2 h irradiation with white light. Seedlings expressing FL and CD phyA had spectral properties for phyA' and phyA" that were indistinguishable from that of wild-type tobacco. Conversely, expression of NA phyA generated an abundant phy species that behaved like phyA". From this we conclude that the N-terminal domain of phyA is involved in determining the photochemical and spectroscopic distinctions between the native phyA' and phyA" species.  相似文献   

6.
Effect of dehydration of plant tissues on the two native phenomenological phytochrome A (phyA) pools - major, variable and soluble phyA' and minor, relatively conserved and presumably membrane(protein)-associated phyA' - was investigated on etiolated seedlings of barley and maize. With the use of in situ low-temperature fluorescence spectroscopy and photochemistry, it was found that even a considerable loss of water (up to 75-85% of the initial fresh weight) by coleoptiles does not bring about noticeable alterations of the spectroscopic and photochemical parameters of phytochrome pointing to a relative stability of the phyA'/phyA' system in this regard. However, extreme dehydration (loss of weight 90%) of plant tissues including freeze-drying caused dramatic changes of the phytochrome properties - blue shift of the emission maximum and its widening and reduction in the extent of the Pr photoconversion into lumi-R at 85 K and into Pfr at 273 K. Rehydration of the dried tissues did not reverse the spectroscopic changes and did not recover the Pr-->lumi-R phototransformation at 85 K but restored the ability of Pr to photoconvert into Pfr at ambient temperatures. At the same time, the total phytochrome content was not affected by these treatments. These effects were interpreted as an irreversible transformation of phyA' into phyA' upon extreme loss of water by plant tissues suggesting that water may play a role in stabilizing the conformation of the major and soluble phyA' species. The data also imply that phyA in dry and imbibing seeds is likely represented primarily by its phyA' isoform.  相似文献   

7.
Phytochrome in etiolated sprouts of wild type (WT) potato and its transgenic strains (DARA5 and DARA12) expressing Arabidopsis thaliana phytochrome B (phyB) was investigated using low-temperature (85 K) fluorescence spectroscopy and photochemistry. Phytochrome content, [Ptot], position of the Pr emission and excitation spectra, lambda(max), and extent of the Pr-->lumi-R, gamma1, and Pr-->Pfr, gamma2, phototransformations (at 85 and 273 K, respectively) were shown to vary in the transgenic lines and WT depending on tissue used (upper vs. lower parts of etiolated sprouts) and light-induced phytochrome depletion. Differences in the parameters between the transgenic lines and WT were detected which were interpreted in terms of the two phenomenological Pr types: a labile Pr' with gamma1 approximately 0.5 consisting of a major phytochrome A (phyA) fraction (phyA') and a relatively conserved Pr" with gamma1 = 0 comprising a minor phyA fraction (phyA") and phyB. Both DARA lines had higher [Pr"] as compared with WT in the lower parts of etiolated stems, especially after light-induced phytochrome depletion (residual phytochrome in DARA5 and DARA12 made up to one-third of its initial level vs. <5% in WT). These differences were associated with the expression of Arabidopsis phyB in the DARA lines and its higher light stability than that of phyA. Arabidopsis phyB expressed in potato was characterised by lambda(max) = 683/669 nm in the emission/excitation (absorption) spectra and gamma1 = 0. PhyB also revealed a relatively low gamma2 (approx. 0.5) and its early red drop as compared with the gamma2 wavelength dependence for phyA. This is believed to contribute to the lower signalling ability of phyB and to confine the region (red) of its physiological activity.  相似文献   

8.
A custom-built modulated split-beam spectrophotometer has been used to measure the absorbance of tissue samples and purified phytochrome whilst exposing the sample to actinic 633 nm laser radiation at fluence rates approaching those of daylight. This approach has allowed the direct observation of the accumulation of phytochrome photoconversion intermediates at high fluence rates. At ca 1250 μmol m?2 s?1 upwards of 35% of the total phytochrome was present in the form of photoconversion intermediates in tissues of maize, sunflower and tomato. In other tissues tested (wheat, bean and Amaranthus) and in purified oat phytochrome, rather smaller levels of intermediates accumulated. Upon “lights-off” only a proportion of the accumulated intermediates decayed to far-red absorbing phytochrome (Pfr), the remainder appearing as the red-absorbing form (Pr). Difference spectra suggested that, at high light levels, Pr may be reformed via a photochemical back-conversion of an intermediate in the Pr—Pfr pathway, although the involvement of intermediates in the Pfr—Pr pathway cannot be excluded. The implications of the results for the ecological function of phytochrome are discussed.  相似文献   

9.
Fluorescence investigations of phytochrome (phy) in rice (Oryza sativa L. cv. Nipponbare) mutants deficient in phyA, phyB and phyA plus phyB were performed. Total content of the pigment (P(tot)) and its spectroscopic and photochemical characteristics were determined in different parts of the dark-grown and far-red light (FR)-grown coleoptiles. Spectroscopically, phyA in the phyB mutant was identical to phyA in the wild-type (WT) and the extent of the conversion from Pr to lumi-R at 85 K was the same for phyA in both lines and varied similarly, depending on the part of the coleoptile used. The latter finding proved that phyA in rice is heterogeneous and comprises two phyA populations, phyA' and phyA". Functional properties of phyA were also determined. In the dark the phyB mutant had a higher content of phyA, inactive protochlorophyllide (Pchlide633) and active protochlorophyllide (Pchlide655) than WT and its coleoptile was longer, indicating that phyB may affect the development of WT seedlings in the dark. Constant FR drastically reduced the content of phyA, Pchlide633 and Pchlide655 and brought about coleoptile shortening and appearance of the first leaf, whereas pulsed FR of equal fluence was less effective. This suggested that the reactions were primarily of the high irradiance responses type, which are likely to be mediated by phyA'. The effects on protochlorophyllide biosynthesis and growth responses type were more pronounced in the phyB mutant than in the WT seedlings, which can be connected with the higher phyA' content in the phyB mutant and/or phyB interference with its action in WT seedlings. In the phyA mutant induction of Pchlide633 and Pchlide655 biosynthesis was observed under constant FR, indicating that phyC may be responsible for this effect.  相似文献   

10.
Transient UV/Vis absorption spectroscopy is used to study the primary dynamics of the ring‐A methyl imino ether of phycocyanobilin (PCB‐AIE), which was shown to mimic the far‐red absorbance of the Pfr chromophore in phytochromes (R. Micura, K. Grubmayr, Bioorg. Med. Chem. Lett.­ 1994, 4, 2517–2522 ). After excitation at 615 nm, the excited electronic state is found to decay with τ1=0.4 ps followed by electronic ground‐state relaxation with τ2=1.2 and τ3=6.7 ps. Compared with phycocyanobilin (PCB), the initial kinetics of PCB‐AIE is much faster. Thus, the lactim structure of PCB‐AIE seems to be a suitable model that could not only explain the bathochromic shift in the ground‐state absorption but also the short reaction of the Pfr as compared to the Pr chromophore in phytochrome. In addition, the equivalence of ring‐A and ring‐D lactim tautomers with respect to a red‐shifted absorbance relative to the lactam tautomers is demonstrated by semiempirical calculations.  相似文献   

11.
Recombinant dimeric full-length Cph1 holophytochrome and its C-terminally-truncated monomeric species [Cph1Delta2, comprising the chromophore-bearing N-terminal sensory module (residues 1 to 514)] from the cyanobacterium Synechocystis expressed in E. coli and reconstituted in vitro with phycocyanobilin (PCB) were investigated with the use of fluorescence spectroscopy and photochemistry in the temperature range from 85 to 293 K. Holoprotein assembly in Cph1 apparently proceeds via intermediate states with the emission maximum at 680-690 nm (I685) and 700 nm (I700) and a half-life time, at room temperature, of < or =5 s. Conversion of the putative I685 into mature Cph1 involves relaxation of the chromophore into a more flexible conformation. Cph1 and Cph1Delta2 were closely similar in their spectroscopic and photochemical characteristics (position of the emission band and its width, character of the temperature dependence of the fluorescence and activation energy of the fluorescence decay, kinetics and extent of the Pr conversion at low and ambient temperatures), suggesting that there is no immediate effect of the C-terminus on the photochemical properties of the chromophore in Cph1 and that chromophore-chromophore interactions in the dimer are not significant. The latter is also supported by the lack of energy transfer from the phycoerythrobilin (PEB) to PCB in the mixed PEB/PCB adduct of Cph1. At the same time, certain variations in the fluorescence and photochemical parameters of Cph1 with temperature of the sample and intensity of the excitation light and dependence of the emission spectra on excitation wavelength were observed. These variations are interpreted as a manifestation of the Cph1 heterogeneity which may be due to the existence of different conformers of the chromophore and photoproduct formation under excitation light.  相似文献   

12.
The full-length apoprotein (124 kDa) and the chromophore-binding N-terminal half (66 kDa) of the phytochrome of the unicellular green alga Mougeotia scalaris have been heterologously expressed in the methylotrophic yeast Pichia pastoris. Assembly with the tetrapyrrole phycocyanobilin (PCB) yielded absorption maxima (for the full-length protein) at 646 and 720 nm for red- and far-red absorbing forms of phytochrome (Pr and Pfr), respectively, whereas the maxima of the N-terminal 66 kDa domain are slightly blueshifted (639 and 714 nm, Pr and Pfr, respectively). Comparison with an action spectrum reported earlier gives evidence that in Mougeotia, as formerly reported for the green alga Mesotaenium caldariorum, PCB constitutes the genuine chromophore. The full-length protein, when converted into its Pfr form and kept in the dark, reverted rapidly into the Pr form (lifetimes of 1 and 24 min, ambient temperature), whereas the truncated chromopeptide (66 kDa construct) was more stable and converted into Pr with time constants of 18 and 250 min. Also, time-resolved analysis of the light-induced Pfr formation revealed clear differences between both recombinant chromoproteins in the various steps involved. The full-length phytochrome showed slower kinetics in the long milliseconds-to-seconds time domain (with dominant Pfr formation processes of ca 130 and 800 ms), whereas for the truncated phytochrome the major component of Pfr formation had a lifetime of 32 ms.  相似文献   

13.
We report a low‐temperature fluorescence spectroscopy study of the PAS‐GAF‐PHY sensory module of Cph1 phytochrome, its Y263F mutant (both with known 3D structures) as well as Y263H and Y263S to connect their photochemical parameters with intramolecular interactions. None of the holoproteins showed photochemical activity at low temperature, and the activation barriers for the Pr→lumi‐R photoreaction (2.5–3.1 kJ mol?1) and fluorescence quantum yields (0.29–0.42) were similar. The effect of the mutations on Pr→Pfr photoconversion efficiency (ΦPr→Pfr) was observed primarily at the prelumi‐R S0 bifurcation point corresponding to the conical intersection of the energy surfaces at which the molecule relaxes to form lumi‐R or Pr, lowering ΦPr→Pfr from 0.13 in the wild type to 0.05–0.07 in the mutants. We suggest that the Ea activation barrier in the Pr* S1 excited state might correspond to the D‐ring (C19) carbonyl – H290 hydrogen bond or possibly to the hindrance caused by the C131/C171 methyl groups of the C and D rings. The critical role of the tyrosine hydroxyl group can be at the prelumi‐R bifurcation point to optimize the yield of the photoprocess and energy storage in the form of lumi‐R for subsequent rearrangement processes culminating in Pfr formation.  相似文献   

14.
The photoreactions of recombinant phytochrome CphA from cyanobacterium Calothrix sp. PCC7601 reconstituted with phycocyanobilin were investigated using UV–Vis and Fourier transform infrared (FTIR) difference spectroscopy, stabilizing intermediates at low temperature. The yield of the forward reaction strongly depends on temperature, unlike the backward reaction. Because of the very fast thermal relaxation processes in the Pr to Pfr pathway, no pure difference spectra of the Pr photoconversion products could be directly measured. Thus, the contribution of the Pfr:Pr pathway was taken into account by applying an appropriate correction procedure both in the UV–Vis and FTIR experiments. Three intermediates have been trapped at −25, −45 and −120°C, which show the characteristic vibrational band pattern of the plant phytochrome phyA intermediates meta-Rc, meta-Ra and lumi-R, respectively. In the backward reaction, two intermediates corresponding to meta-F and lumi-F were trapped at −70 and −140°C, respectively. FTIR spectra of all intermediates, as well as of the Pfr state, show remarkable similarities with the corresponding spectra of Cph1 phytochrome from cyanobacterium Synechocystis and the 59 kDa N-terminal fragment of Cph1, and, albeit not so pronounced, also with plant phyA. The spectral similarities and differences between the various phytochromes are discussed in terms of structural changes of the chromophore and the chromophore–protein interactions.  相似文献   

15.
Photoisomerization of a protein‐bound chromophore is the basis of light sensing and signaling in many photoreceptors. Phytochrome photoreceptors can be photoconverted reversibly between the Pr and Pfr states through photoisomerization of the methine bridge between rings C and D. Ground‐state heterogeneity of the chromophore has been reported for both Pr and Pfr. Here, we report ultrafast visible (Vis) pump–probe and femtosecond polarization‐resolved Vis pump–infrared (IR) probe studies of the Pfr photoreaction in native and 13C/15N‐labeled Cph1 phytochrome with unlabeled PCB chromophore, demonstrating different S0 substates, Pfr‐I and Pfr‐II, with distinct IR absorptions, orientations and dynamics of the carbonyl vibration of ring D. We derived time constants of 0.24 ps, 0.7 ps and 6 ps, describing the complete initial photoreaction. We identified an isomerizing pathway with 0.7 ps for Pfr‐I, and silent dynamics with 6 ps for Pfr‐II. We discuss different origins of the Pfr substates, and favor different facial orientations of ring D. The model provides a quantum yield for Pfr‐I of 38%, in line with ~35% ring D rotation in the electronic excited state. We tentatively assign the silent form Pfr‐II to a dark‐adapted state that can convert to Pfr‐I upon light absorption.  相似文献   

16.
The chromophore structures in the parent states Pr and Pfr as well as in the photocycle intermediate Lumi-R of oat phytochrome phyA are determined by comparison of the experimental resonance Raman spectra with calculated Raman spectra that have been obtained by density functional theory calculations (B3LYP) using scaled force fields. The spectra were calculated for various tetrapyrrole geometries including more than twenty different methine bridge isomers. For the parent states Pr and Pfr the best agreement in terms of vibrational frequencies, isotopic shifts, and Raman intensities was achieved with the ZZZasa and ZZEssa geometry, respectively. For the first intermediate Lumi-R, the chromophore geometry is concluded to be the ZZEasa configuration. These finding imply that the primary step of the photoactivation of phytochrome is the Z/E isomerization of the C-D methine bridge double bond, whereas the single bond remains in the anti conformation. The subsequent transition to the physiologically active state Pfr includes a (partial) single bond rotation of the A-B methine bridge.  相似文献   

17.
Higher plants use the protein phytochrome as a photosensor. In physiological temperatures phytochrome exists in two forms: Pr and Pfr. The chromophore of phytochrome is an open-chain tetrapyrrole. On the pathway from Pr to Pfr four intermediates (Lumi-R, Meta-Ra, Meta-Rb, and Meta-Rc) can be distinguished, while only two (Lumi-F and Meta-F) can be seen on the way back from Pfr to Pr. We have used the x-ray structure of the C-Phycocyanin protein Fremyella diplosiphon bacteria as a template to build a model (∼200 atoms) that includes only the chromophore and five amino acids of the phytochrome (Arg316–Cys321–His322–Leu323–Gln324) around it. Using the existing experimental evidences, we have proposed a three-dimensional (3D) structure for Pr, Pfr, and intermediates and a mechanism for the photoisomerization as well. Structures were fully optimized using AM1 (Unichem package on a Cray J90-NACAD). Using the INDO/S method of Zerner and co-workers, we calculated the absorption spectra of the model compounds and compared them with the experimental data. The oscillator strength ratio is an indicator of the chomophore conformation in biliproteins. The calculated spectra reproduces well the spectra of the phytochrome (Pr, Pfr, and intermediates) except for the lower energy band. This result is attributed to the small number of amino acids in the models. The calculated ratios (fVIS/fUVfosc of visible band over fosc of UV band and f2/f1fosc of second absorption band over fosc of first absorption band) for the models match very well the experimental ratios obtained for the phytochrome (Pr, Pfr, and intermediates). This supports the proposed mechanism for the photoisomerization process. © 1998 John Wiley & Sons, Inc. Int J Quant Chem 70: 1145–1157, 1998  相似文献   

18.
Emission spectra of the red phytochrome form (Pr) and fluence time-response curves of the Pr fluorescence intensity changes were measured in etiolated pea seedlings at low temperatures (80–150 K) in connection with its phototransformations into the initial photoproduct (Lr) and back upon actinic red (667 nm) and far-red (696 nm) illumination. The variable fluorescence reaches 45% at 85 K and decreases with the rise of temperature. Three kinetic components of the changes were found in the direct (Pr→Lr) and back (Lr→Pr) photoreactions belonging to three states of phytochrome: “slow”, “fast” and “very fast” (respective indices: s, f and vf). The amplitudes of the components and rate constants to reach photoequilibrium were determined in the direct and back photoreactions at different temperatures, and from this, their quantum yields, extent of the Pr?Lr phototransformation and activation energy of the reactions were evaluated for the three Pr and Lr states. The yields differ from each other by approximately a factor of 10 and those for the direct and back photoreactions are close to each other. The proportion of the amplitudes of the variable fluorescence of the three phytochrome states changes with temperature and upon the Pr→Lr photo-transformation and the Pr states differ in the position of their emission spectra by 3–5 nm. A close similarity between the Pr and Lr properties was observed, which implies a symmetrical scheme of their photoreactions. It is suggested that the three phytochrome species may originate in different conformational states of the chromophore and they independently transform in parallel photoreactions into the respective photoproducts: Prvf?Lrvf, Prf?Lrf and Prs?Lrs.  相似文献   

19.
Studies on the capacity of Pr in uitro to photoconvert to the long wavelength in uioo-like Pfr form were performed with extracts from 10 species. Red irradiation, immediately after extraction of crude extracts from 9 species, photoconverted Pr to long-wavelength Pfr with an absorbance maximum around 735 nm. Red irradiation of soybean extracts, however, photoconverted Pr to short-wavelength Pfr, with an absorbance maximum at 725 nm. Red irradiation given later than 1.5-2 h after extraction, to extracts of oats, pea, cucumber, radish, sunflower and soybean, photoconverted Pr to a short-wavelength Pfr species with an absorbance maximum around 725 nm. In crude extracts of barley, corn, wheat and zucchini, red irradiation, even after a long dark-incubation period at 4°C of up to 48 h, photoconverted Pr to long-wavelength Pfr with an absorbance maximum around 735 nm. After incubation at 25°C for 3 h, however, Pr from barley also photoconverted to the short-wavelength form. It is suggested that in the group exemplified by oats, Pr rapidly undergoes an alteration following extraction, which results in the loss of the capacity of Pr to photoconvert to long-wavelength Pfr. In contrast, in extracts from the group exemplified by barley, Pr is much more stable and retains the capacity to photoconvert to long-wavelength Pfr for much longer periods.  相似文献   

20.
The photoreceptor phytochrome switches photochromically between two thermally stable states called Pr and Pfr. Here, we summarize recent solid‐state magic‐angle spinning (MAS) NMR work on this conversion process and interpret the functional mechanism in terms of a nano‐machine. The process is initiated by a double‐bond photoisomerization of the open‐chain tetrapyrrole chromophore at the methine bridge connecting pyrrole rings C and D. The Pr‐state chromophore and its surrounding pocket in canonical cyanobacterial and plant phytochromes has significantly less order, tends to form isoforms and is soft. Conversely, Pfr shows significantly harder chromophore–protein interactions, a well‐defined protonic and charge distribution with a clear classical counterion for the positively charged tetrapyrrole system. The soft‐to‐hard/disorder‐to‐order transition involves the chromophore and its protein surroundings within a sphere of at least 5.5 Å. The relevance of this collective event for signaling is discussed. Measurement of the intermediates during the Pfr → Pr back‐reaction provides insight into the well‐adjusted mechanics of a two‐step transformation. As both Pr → Pfr and Pfr → Pr reaction pathways are different in ground and excited states, a photochemically controlled hyper‐landscape is proposed allowing for ratchet‐type reaction dynamics regulating signaling activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号