首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A graph G is said to be super-connected if any minimum cut of G isolates a vertex. In a previous work due to the second author of this note, super-connected graphs which are both vertex transitive and edge transitive are characterized. In this note, we generalize the characterization to edge transitive graphs which are not necessarily vertex transitive, showing that the only irreducible edge transitive graphs which are not super-connected are the cycles Cn(n?6) and the line graph of the 3-cube, where irreducible means the graph has no vertices with the same neighbor set. Furthermore, we give some sufficient conditions for reducible edge transitive graphs to be super-connected.  相似文献   

2.
Let G be a finite group and let S(possibly, contains the identity element) be a subset of G. The Bi-Cayley graph BC(G, S) is a bipartite graph with vertex set G×{0, 1} and edge set {(g, 0) (sg, 1) : g∈G, s ∈ S}. A graph is said to be super-connected if every minimum vertex cut isolates a vertex. A graph is said to be hyper-connected if every minimum vertex cut creates two components, one of which is an isolated vertex. In this paper, super-connected and/or hyper-connected cubic Bi-Cayley graphs are characterized.  相似文献   

3.
A digraph is said to be super-connected if every minimum vertex cut is the out-neighbor set or in-neighbor set of a vertex. A digraph is said to be reducible, if there are two vertices with the same out-neighbor set or the same in-neighbor set. In this paper, we prove that a strongly connected arc-transitive oriented graph is either reducible or super-connected. Furthermore, if this digraph is also an Abelian Cayley digraph, then it is super-connected.  相似文献   

4.
A graph G is said to be semi-hyper-connected if the removal of every minimum cut of G creates exactly two connected components. In this paper, we characterize semi-hyper-connected vertex transitive graphs, in particular Cayley graphs.  相似文献   

5.
A graph is said to be superconnected if every minimum vertex cut isolates a vertex. A graph is said to be hyperconnected if each minimum vertex cut creates exactly two components, one of which is an isolated vertex. In this paper, we characterize superconnected or hyperconnected vertex transitive graphs with degree 4 and 5. As a corollary, superconnected or hyperconnected planar transitive graphs are characterized.  相似文献   

6.
Let X =  (V, E) be a connected graph. Call X super restricted edge connected in short, sup-λ′, if F is a minimum edge set of X such that XF is disconnected and every component of XF has at least two vertices, then F is the set of edges adjacent to a certain edge with minimum edge degree in X. A bipartite graph is said to be half vertex transitive if its automorphism group is transitive on the sets of its bipartition. In this article, we show that every connected half vertex transitive graph X with n =  |V(X)| ≥  4 and X \ncong K1,n-1{X \ncong K_{1,n-1}} is λ′-optimal. By studying the λ′-superatoms of X, we characterize sup-λ′ connected half vertex transitive graphs. As a corollary, sup-λ′ connected Bi-Cayley graphs are also characterized.  相似文献   

7.
A near perfect matching is a matching saturating all but one vertex in a graph. If G is a connected graph and any n independent edges in G are contained in a near perfect matching, then G is said to be defect n-extendable. If for any edge e in a defect n-extendable graph G, Ge is not defect n-extendable, then G is minimal defect n-extendable. The minimum degree and the connectivity of a graph G are denoted by δ(G) and κ(G) respectively. In this paper, we study the minimum degree of minimal defect n-extendable bipartite graphs. We prove that a minimal defect 1-extendable bipartite graph G has δ(G)=1. Consider a minimal defect n-extendable bipartite graph G with n≥2, we show that if κ(G)=1, then δ(G)≤n+1 and if κ(G)≥2, then 2≤δ(G)=κ(G)≤n+1. In addition, graphs are also constructed showing that, in all cases but one, there exist graphs with minimum degree that satisfies the established bounds.  相似文献   

8.
图G称为上连通的,若对每个最小割集C,G-C有孤立点.G称为超连通的,若对每个最小割集G,G-C恰有两个连通分支,且其中之一为孤立点.本文刻划了上连通和超连通三次点传递图.  相似文献   

9.
图G称为上连通的,若对每个最小割集C,G-C有孤立点,G称为超连通的,若对每个最小割集C,G-C恰有两个连通分支,且其中之一为弧立点,本文刻划了上连通和超连通三次点传递图。  相似文献   

10.
A graph G is said to be hyper-connected if the removal of every minimum cut creates exactly two connected components, one of which is an isolated vertex. In this paper, we first generalize the concept of hyper-connected graphs to that of semi-hyper-connected graphs: a graph G is called semi-hyper-connected if the removal of every minimum cut of G creates exactly two components. Then we characterize semi-hyper-connected edge transitive graphs.  相似文献   

11.
A graph of order n is p ‐factor‐critical, where p is an integer of the same parity as n, if the removal of any set of p vertices results in a graph with a perfect matching. 1‐factor‐critical graphs and 2‐factor‐critical graphs are factor‐critical graphs and bicritical graphs, respectively. It is well known that every connected vertex‐transitive graph of odd order is factor‐critical and every connected nonbipartite vertex‐transitive graph of even order is bicritical. In this article, we show that a simple connected vertex‐transitive graph of odd order at least five is 3‐factor‐critical if and only if it is not a cycle.  相似文献   

12.
Let G be a bipartite graph with vertex set V(G) and edge set E(G), and let g and f be two nonnegative integer-valued functions defined on V(G) such that g(x)f(x) for every vertex x of V(G). A (g, f)-coloring of G is a generalized edge-coloring in which each color appears at each vertex x at least g(x) and at most f(x) times. In this paper a polynomial algorithm to find a (g, f)-coloring of a bipartite graph with some constraints using the minimum number of colors is given. Furthermore, we show that the results in this paper are best possible.  相似文献   

13.
Let Г be a simple connected graph and let G be a group of automorphisms of Г. Г is said to be (G, 2)-arc transitive if G is transitive on the 2-arcs of Г. It has been shown that there exists a family of non-quasiprimitive (PSU3(q), 2)-arc transitive graphs where q = 2^3m with m an odd integer. In this paper we investigate the case where q is an odd prime power.  相似文献   

14.
Let X be a vertex‐transitive graph, that is, the automorphism group Aut(X) of X is transitive on the vertex set of X. The graph X is said to be symmetric if Aut(X) is transitive on the arc set of X. suppose that Aut(X) has two orbits of the same length on the arc set of X. Then X is said to be half‐arc‐transitive or half‐edge‐transitive if Aut(X) has one or two orbits on the edge set of X, respectively. Stabilizers of symmetric and half‐arc‐transitive graphs have been investigated by many authors. For example, see Tutte [Canad J Math 11 (1959), 621–624] and Conder and Maru?i? [J Combin Theory Ser B 88 (2003), 67–76]. It is trivial to construct connected tetravalent symmetric graphs with arbitrarily large stabilizers, and by Maru?i? [Discrete Math 299 (2005), 180–193], connected tetravalent half‐arc‐transitive graphs can have arbitrarily large stabilizers. In this article, we show that connected tetravalent half‐edge‐transitive graphs can also have arbitrarily large stabilizers. A Cayley graph Cay(G, S) on a group G is said to be normal if the right regular representation R(G) of G is normal in Aut(Cay(G, S)). There are only a few known examples of connected tetravalent non‐normal Cayley graphs on non‐abelian simple groups. In this article, we give a sufficient condition for non‐normal Cayley graphs and by using the condition, infinitely many connected tetravalent non‐normal Cayley graphs are constructed. As an application, all connected tetravalent non‐normal Cayley graphs on the alternating group A6 are determined. © 2011 Wiley Periodicals, Inc. J Graph Theory  相似文献   

15.
A near perfect matching is a matching saturating all but one vertex in a graph. Let G be a connected graph. If any n independent edges in G are contained in a near perfect matching where n is a positive integer and n(|V(G)|-2)/2, then G is said to be defect n-extendable. If deleting any k vertices in G where k|V(G)|-2, the remaining graph has a perfect matching, then G is a k-critical graph. This paper first shows that the connectivity of defect n-extendable graphs can be any integer. Then the characterizations of defect n-extendable graphs and (2k+1)-critical graphs using M-alternating paths are presented.  相似文献   

16.
In 1983, the second author [D. Maru?i?, Ars Combinatoria 16B (1983), 297–302] asked for which positive integers n there exists a non‐Cayley vertex‐transitive graph on n vertices. (The term non‐Cayley numbers has later been given to such integers.) Motivated by this problem, Feng [Discrete Math 248 (2002), 265–269] asked to determine the smallest valency ?(n) among valencies of non‐Cayley vertex‐transitive graphs of order n. As cycles are clearly Cayley graphs, ?(n)?3 for any non‐Cayley number n. In this paper a goal is set to determine those non‐Cayley numbers n for which ?(n) = 3, and among the latter to determine those for which the generalized Petersen graphs are the only non‐Cayley vertex‐transitive graphs of order n. It is known that for a prime p every vertex‐transitive graph of order p, p2 or p3 is a Cayley graph, and that, with the exception of the Coxeter graph, every cubic non‐Cayley vertex‐transitive graph of order 2p, 4p or 2p2 is a generalized Petersen graph. In this paper the next natural step is taken by proving that every cubic non‐Cayley vertex‐transitive graph of order 4p2, p>7 a prime, is a generalized Petersen graph. In addition, cubic non‐Cayley vertex‐transitive graphs of order 2pk, where p>7 is a prime and k?p, are characterized. © 2011 Wiley Periodicals, Inc. J Graph Theory 69: 77–95, 2012  相似文献   

17.
Optimally super-edge-connected transitive graphs   总被引:4,自引:0,他引:4  
Jixiang Meng   《Discrete Mathematics》2003,260(1-3):239-248
Let X=(V,E) be a connected regular graph. X is said to be super-edge-connected if every minimum edge cut of X is a set of edges incident with some vertex. The restricted edge connectivity λ′(X) of X is the minimum number of edges whose removal disconnects X into non-trivial components. A super-edge-connected k-regular graph is said to be optimally super-edge-connected if its restricted edge connectivity attains the maximum 2k−2. In this paper, we define the λ′-atoms of graphs with respect to restricted edge connectivity and show that if X is a k-regular k-edge-connected graph whose λ′-atoms have size at least 3, then any two distinct λ′-atoms are disjoint. Using this property, we characterize the super-edge-connected or optimally super-edge-connected transitive graphs and Cayley graphs. In particular, we classify the optimally super-edge-connected quasiminimal Cayley graphs and Cayley graphs of diameter 2. As a consequence, we show that almost all Cayley graphs are optimally super-edge-connected.  相似文献   

18.
A strongly connected digraph D is said to be super-connected if every minimum vertex-cut is the out-neighbor or in-neighbor set of a vertex. A strongly connected digraph D is said to be double-super-connected if every minimum vertex-cut is both the out-neighbor set of a vertex and the in-neighbor set of a vertex. In this paper, we characterize the double-super-connected line digraphs, Cartesian product and lexicographic product of two digraphs. Furthermore, we study double-super-connected Abelian Cayley digraphs and illustrate that there exist double-super-connected digraphs for any given order and minimum degree.  相似文献   

19.
Vertices of Degree 5 in a Contraction Critically 5-connected Graph   总被引:2,自引:0,他引:2  
An edge of a k-connected graph is said to be k-contractible if the contraction of the edge results in a k-connected graph. A k-connected graph with no k-contractible edge is said to be contraction critically k-connected. We prove that a contraction critically 5-connected graph on n vertices has at least n/5 vertices of degree 5. We also show that, for a graph G and an integer k greater than 4, there exists a contraction critically k-connected graph which has G as its induced subgraph.  相似文献   

20.
A graph is vertex‐transitive if its automorphism group acts transitively on vertices of the graph. A vertex‐transitive graph is a Cayley graph if its automorphism group contains a subgroup acting regularly on its vertices. In this article, the tetravalent vertex‐transitive non‐Cayley graphs of order 4p are classified for each prime p. As a result, there are one sporadic and five infinite families of such graphs, of which the sporadic one has order 20, and one infinite family exists for every prime p>3, two families exist if and only if p≡1 (mod 8) and the other two families exist if and only if p≡1 (mod 4). For each family there is a unique graph for a given order. © 2011 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号