首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to characterize the fractionation profile of casein hydrolysates obtained with polysulfone hollow fiber ultrafiltration membranes. The two-step ultrafiltration process developed by Turgeon and Gauthier [J. Food Sci., 55 (1990) 106] was used: a caseinate solution was submitted to proteolysis with chymotrypsin or trypsin, and the reaction mixture (RM) was subsequently ultrafiltered using a 30 kDa (MWCO) hollow-fiber polysulfone membrane. The total hydrolysate permeating from this first step was further fractionated using a 1 kDa (MWCO) membrane, producing the mixture of polypeptides (retentate) and the amino acid fraction (permeate). The effect of enzyme specificity and of membrane retentivitiy on the total composition (total nitrogen, fat, lactose, minerals) and amino acid profile of the fractions was studied. The overall composition of the fractions was not significantly affected by the nature of the enzyme but the degree of hydrolysis and the molecular weight distribution profile analyses showed a marked effect of the enzyme specificity, with trypsin giving a larger proportion of small peptides (< 200 Da) in the mixture of polypeptides. Amino acid profile analyses provided useful information on the phenomena governing the fractionation of amino acids with a polysulfone membrane: (1) the target amino acids of the enzyme are concentrated in the permeate as a result of their presence in all peptides produced by hydrolysis, (2) polar amino acids are retained by the membrane, (3) non-polar amino acids are not selectively rejected by the membrane. Our results suggest that the charge/hydrophobicity balance of the peptides produced is the predominant factor determining the fractionation of casein hydrolysates.  相似文献   

2.
Asymmetric flat ultrafiltration membranes made from bromomethylated polysulfone were used to fix invertase chemically. The invertase reactivity of these membranes was compared with those where enzyme bonding was achieved by reacting bromomethylated polysulfone with ethylene diamine and glutaric dialdehyde which act as spacers. In both cases the invertase fixation was carried out such that its concentration at the surface facing the saccharose feed solution could be neglected The kinetic behavior of the immobilized invertase was modelled by investigating the influence of diffusive and of convective transport across the membranes. Considering axial back-mixing of the convective flow within the membrane, the reaction can be simulated at low substrate concentrations. The heterogeneous distribution of the enzyme within the membrane matrix prevents us from calculating the kinetic data of the enzymatic reaction over the entire range of parameters.  相似文献   

3.
Picolinamidination of amino groups in peptides was carried out using ethyl picolinimidate tetrafluoroborate synthesized from picolinamide and triethyloxonium tetrafluoroborate. The N-terminal amino group as well as the epsilon-amino group of lysine were derivatized. The matrix-assisted laser desorption/ionization (MALDI) signal of a peptide was enhanced 20-35-fold upon picolinamidination depending on the number of amino groups derivatized. The signal enhancement effect is much higher than that of acetamidination or guanidination previously reported. Improved protein identification by mass mapping of the derivatized peptides was demonstrated.  相似文献   

4.
乔宗文  赵本波 《应用化学》2020,37(6):658-665
以双酚A型聚砜(PSF)为基质材料,通过傅-克烷基化反应在PSF主链引入—NCO活性基团,制备乙基异氰酸化聚砜(PS-SA)。 在制备PS-SA的基础上,采用两步一锅法,PS-SA与2-萘酚-6,8-二磺酸钾通过亲核取代反应,制备一种侧链含有萘环的萘磺酸型磺化聚砜PS-NS,充分表征聚合物的化学结构,以溶液浇注的方法制备质子交换膜,研究了温度对PS-NS膜的吸水率(WU,Water Uptaking)、吸水溶胀性(Swelling Ratio)、质子传导率(Proton Conductivity)等基本性能的影响。 结果表明,PS-NS膜由于亲水基团距离较远,能够很容易形成相分离结构,所制备的质子交换膜高WU下尺寸稳定性仍然很高,其中PS-NS-4膜(磺酸基团键合量为1.42 mmol/g)在25和85 ℃的WU高达27.2%和40.3%,但是相应的吸水溶胀性仅为25.2%和57.2%,与相同条件下Nafion115膜的性能十分接近。  相似文献   

5.
The activity of invertase that was immobilized within asymmetric ultrafiltration membranes was determined as a function of the immobilization mode such as adsorption, ionic interaction and covalent bonding. For these different bonding possibilities adequate membranes were prepared from chemically modified polysulfone fitted out with the corresponding substituents. The amount of enzyme was lowest for adsorption and highest for chemical fixation. In the latter case spacers were useful because substituents adjacent to the polymer backbone caused a relatively large loss of activity which can stem either from chemical reaction or from the hampered development of the appropriate conformational structure. Compared to the activity of the native invertase the fixation yielded a remarkable reduction of activity which was compensated for by the very extended stability of the bonded enzyme.  相似文献   

6.
Well‐defined amphiphilic graft copolymer with hydrophobic polysulfone (PSU) backbone and hydrophilic poly(acrylic acid) (PAA) side chains were synthesized and characterized. For this purpose, commercially available PSU was converted to azido‐functionalized polymer (PSU‐N3) by successive chloromethylation and azidation processes. Independently, poly(tert‐butyl acrylate) (PtBA) with an alkyne‐end‐group is obtained by using suitable initiator in atom transfer radical polymerization (ATRP). Then, this polymer was successfully grafted onto PSU‐N3 by click chemistry to yield polysulfone‐graft‐poly(tert‐butyl acrylate), (PSU‐g‐PtBA). Finally, amphiphilic polysulfone‐graft‐poly(acrylic acid), (PSU‐g‐PAA), membranes were obtained by hydrolyzing precursor the PSU‐g‐PtBA membranes in trifluoroacetic acid. The final polymer and intermediates at various stages were characterized by 1H NMR, FTIR, GPC, and SEM analyses. Protein adsorption and eukaryotic and prokaryotic cell adhesion on PSU‐g‐PAA were studied and compared to those of PSU‐g‐PtBA and unmodified PSU. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

7.
Polysulfone/poly(ethylene glycol) amphiphilic networks were prepared via in situ photo-induced free radical crosslinking polymerization. First, the hydrophobic polysulfone diacrylate (PSU-DA) oligomer was synthesized by condensation polymerization and subsequent esterification processes. Then, the obtained oligomer was co-crosslinked with the hydrophilic poly(ethylene glycol) diacrylate (PEG-DA) or poly(ethylene glycol) methyl ether acrylate (PEG-MA) at different feed ratios. In the case of PEG-MA, the resulting network possessed dangling pendant hydrophilic chains on the crosslinked surface. The structure and the morphology of the membranes were characterized by attenuated total reflection infrared spectroscopy (ATR-IR) and scanning electron microscopy (SEM). The enhancement of surface hydrophilicity was investigated by water contact angle measurements. The biomolecule adsorption properties of these networks were also studied. The biomolecules easily adsorbed on the surface of the hydrophobic polysulfone networks whereas dangling hydrophilic chains on the surface prevented the adsorption of the biomolecules.  相似文献   

8.
In this article, poly[poly(ethyleneglycol) acrylate] (polyPEG‐A) with mercaptothiazoline ester terminal group was synthesized directly by reversible addition fragmentation chain transfer (RAFT) polymerization using a mercaptothiazoline ester functional RAFT agent. The functional polyPEG‐A was then conjugated to glucose oxidase (GOx) via surface‐tethered amino groups through covalent amide coupling. Sorensenformaltitration assay revealed that GOx retained ~14 free amino groups available for covalent modification. The conjugation reaction turned out to be efficient and mild. Colorimetric method was applied to evaluate the enzymatic activity of native GOx and its derivatives by introducing another enzyme, horseradish peroxidase. The modified GOx with polymeric chains exhibited reduced enzymatic activity toward the catalytical oxidation of glucose, but with significantly increased thermal stability and elongated lifetime. When GOx was modified with polyPEG‐A [molecular weight (MW), 45,000; polydispersity index, 1.12] the enzymatic activity was decreased to 37 U/mg, only 29% left. However, when incubated at 25 °C the modified GOx still retained 9.6% of its original bioactivity after 60 days, whereas the native GOx only lived for 29 days. The more polymer chains or the longer polymer chain attached, the more reduction of the enzymatic activity resulted, however, the longer the lifetime of the enzyme obtained. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

9.
Cellulose/cellulose acetate membranes were prepared and functionalized by introducingamino group on it, and then immobilized the glucose oxidase (Gox) on the functionalizd membrane.SECM was applied for the detection of enzyme activity immobilized on the membrane.Immobilized biomolecules on such membranes was combined with analysis apparatus and can beused in bioassays.  相似文献   

10.
This paper presents an original approach to prepare the asymmetric sulfonated polysulfone membranes by using wet phase inversion method and their applications for dehydrating a water/ethanol mixture by pervaporation. The separation performances of sulfonated membranes were strongly affected by the degree of sulfonation and the degree of swelling of membranes. The substitution degree of sulfonic group enhanced the permselectivity of sulfonated polysulfone membranes by increasing the hydrophilicity of polymer backbone. Based on the observations of membrane morphology and light transmittance measurements, the degree of sulfonation of polysulfone presented less influence on the membrane formation pathway and the final structure of membrane in wet phase inversion process. It was also found that the sulfonated membranes showed well hydrophilic properties and facilitated water adsorption in the membranes. The sorption and permeation properties also showed that the permselectivity of asymmetric membrane was dominated by the permeate diffusion rather than the permeate sorption in the skin layer. The high separation performance of pervaporation membrane can be achieved by phase inverse method with sulfonated polysulfone.  相似文献   

11.
Abstract

A method was developed specifically for the determination of glutamine and asparagine in the presence or absence of other amino acids. The amino acids were derivatized by o-phthalaldehyde/ 2-mercaptoethanol and separated by isocratic elution with a mobile phase consisting of acetonitrile and sodium acetate buffer. An application of the method for the analysis of glutamine and asparagine in the enzymatic hydrolysate of cottonseed protein is described.  相似文献   

12.
Hydrophilic polysulfone ultrafiltration (UF) membranes were prepared from blends of cellulose acetate with carboxylated polysulfone of 0.14 degree of carboxylation. The effects of blend polymer composition on compaction, pure water flux, water content and membrane hydraulic resistance (Rm), have been investigated to evaluate the performance of the membranes. The performance of the blend membranes of various blend polymer compositions were compared with that of membranes prepared from pure cellulose acetate and blends of cellulose acetate and pure polysulfone. The hydrophilic cellulose acetate-carboxylated polysulfone blend UF membranes showed better performance compared to membranes prepared from pure cellulose acetate and blends of cellulose acetate and pure polysulfone.  相似文献   

13.
A group of new, water-soluble poly(ether-urethane)s, derived from poly(ethylene glycol) and the amino acid L -lysine, provide pendent carboxylic acid groups along the polymer backbone at regular intervals. The carboxylic acid groups were utilized for the attachment of acrylate and methacrylate pendent chains (hydroxyethyl acrylate, hydroxyethyl methacrylate, aminoethyl methacrylate, and aminoethyl methacrylamide), leading to functionalized polymers. The pendent chains were attached via ester and/or amide bonds having different degrees of hydrolytic stability. The attachment reactions proceeded with high yields (up to 95%). The functionalized polymers were subsequently photopolymerized (UV irradiation) to obtain crosslinked hydrogels. Crosslinked membranes with the highest degree of mechanical strength were obtained when the crosslinking reaction was performed in dioxane with benzoin methyl ether (0.1 wt %) as the initiator. the crystallinity, thermomechanical properties, and hydrolytic stability of the crosslinked membranes were studied. All membranes were transparent and highly swellable (equilibrium water content: 64–88%). The tensile strength in the swollen state ranged from 0.15 to 1.09 MPa. Under physiological conditions (phosphate buffered water, 0.1M, pH 7.4, 37°C) the hydrolytic stability of the hydrogels varied depending on the bonds used in the attachment of the acrylate pendent chains: Hydrogels with hydroxyethyl acrylate pendent chains dissolved within 30 days, while hydrogels containing aminoethyl methacrylamide pendent chains remained unchanged throughout a 30 day period. Using high molecular weight FITC-dextrans as model compounds, complete release from the swollen hydrogels required between 60 and 150 h. Overall, the evaluation of poly(ethylene glycol)-lysine derived, photocrosslinked hydrogels indicated that these materials provide a range of potentially useful properties. © 1994 John Wiley & Sons, Inc.  相似文献   

14.
Transformation of “living” carbocationic polymerization of styrene and isobutene to controlled atom transfer radical polymerization (ATRP) is described and formation of the corresponding AB and ABA block copolymers with styrene (St), methyl methacrylate (MMA, methyl acrylate (MA) and isobornyl acrylate (IBA) was demonstrated. A similar approach was applied to the cationic ring opening polymerization of tetrahydrofuran leading to the AB and ABA block copolymers with St, MMA and MA using ATRP. Site transformation approach was also used for the ring opening metathesis polymerization of norbornene and polycondensation systems using polysulfone as an example. In both cases, AB and ABA block copolymers were efficiently formed with styrene and acrylates.  相似文献   

15.
在均相溶液体系下,运用紫外光辐射引发合成了聚砜与丙烯酸的接枝共聚物。用化学滴定、漫反射傅立叶变换红外光谱和热分析等技术对接枝聚合物进行了表征。结果表明:丙烯酸被接枝在聚砜链上;光照时间、单体浓度和光引发剂浓度对接枝率均有较大影响。膜表面接触角的研究表明,接枝共聚物膜的亲水性比改性前有所提高。  相似文献   

16.
The coupling of an enzymatic transformation with dynamic host-guest exchange allows the unselective binding of macrocycles to be used for highly selective analyte sensing. The resulting supramolecular tandem enzyme assays require the enzymatic substrate and its corresponding product to differ significantly in their affinity for macrocycles, for example, cation receptors, and to show a differential propensity to displace a fluorescent dye from its host-guest complex. The enzymatic transformation results in a concomitant dye displacement that can be accurately followed by optical spectroscopy, specifically fluorescence. By exploiting this label-free continuous enzyme assay principle with the fluorescent dye Dapoxyl and the macrocyclic host cucurbit[7]uril, a multiparameter sensor array has been designed, which is capable of detecting the presence of amino acids (e.g. histidine, arginine, lysine, and tyrosine) and their decarboxylases. Only in the presence of both, the particular amino acid and the corresponding decarboxylase, is the amine or diamine product formed. These products are more highly positively charged than the substrate, have a higher affinity for the macrocycle and, therefore, displace the dye from the complex. The extension of the high selectivity and muM sensitivity of the tandem assay principle has also allowed for the accurate measurement of D-lysine enantiomeric excesses of up to 99.98 %, as only the L-enantiomer is accepted by the enzyme as a substrate and is converted to the product that is responsible for the observed fluorescence signal.  相似文献   

17.
Protein blotting followed by microsequencing   总被引:1,自引:0,他引:1  
The use of new membranes such as activated or derivatized glass fibers as well as synthetic membranes, which are compatible with the hazardous sequencing reagents, are described. Precautions to be taken in order to prevent N-terminal blockage of the proteins during electrophoresis and blotting are described, as well as the conditions for protein detection after blotting and protein treatment for in situ amino acid analysis, fragmentation and microsequencing. For a number of standard proteins and bacterial ribosomal proteins microsequence analysis is reported for two commercially available sequencers (Applied Biosystems and Knauer).  相似文献   

18.
We describe the synthesis, as well as the electrochemical and structural characterization, of sulfonated polysulfone intended for use in PEM fuel cells. Starting from a commercial polysulfone, we assessed the performance of these prepared ionomers using synthesis protocols compatible with industrial production. The efficiency of the trimethylsilyl chlorosulfonate and chlorosulfonic acid reagents in the sulfonation process was confirmed by 1H NMR, FTIR, elemental analysis, chemical titration and thermal analysis (DSC and TGA). Chlorosulfonic acid was the most effective sulfonation reagent. However, based on SEC-MALLS, this reagent induced degradation of the backbone that is detrimental to the thermomechanical stability and lifespan of the membranes. The electrical characterization of the membranes was undertaken using impedance spectroscopy in contact with different HCl aqueous solutions at various temperatures. The activation energies, which ranged from 8.2 to 11 kJ/mol, were in agreement with the prevailing proton vehicular mechanism.  相似文献   

19.
Asymmetric ultrafiltration membranes were prepared from fully aromatic polyamides differing in the diamine monomers of the polymeric backbone and from polysulfone. Nanofiltration membranes were made from polysulfone and polyethersulfone. The polysulfone as well as the polyethersulfone were chemically modified to change the surface charges of the membranes that were made from these polymers. This means neutral, positively as well as negatively charged membranes could be employed for the measurements. The surface properties of the membranes as a function of pH were determined by measuring the streaming potential in a perpendicular and horizontal mode. Applying proteins the values of the streaming potential changed depending on the original charges of the membranes as well as on the pH of the solution. The values shifted to either higher or lower absolute values. Thus, characterization of unused and used membranes can be carried out by electrokinetic measurements. This was also demonstrated using a membrane fitted out with invertase. The zeta potential of nanofiltration membranes, however, was only evaluated from the results obtained with the horizontally run cell.  相似文献   

20.
A macrovoid structure is formed in polysulfone (PSf) polymeric membranes prepared by the immersion technique using N-dimethylformamide (DMF)/water as a solvent/non-solvent pair. It is actually important controlling the macrovoid formation process, because macrovoids can cause unwanted mechanical failure during high-pressure applications. In order to control the formation of these structures, the influence of different parameters like membrane thickness, solvent additives (isopropyl myristate, IPM or N-hexadecyl-l-hydroxypriline, HHP), temperature of the coagulation bath, and solvent/non-solvent pair has been studied for chiral activated membranes. With the same purpose, corresponding membranes where physically characterized by scanning electron microscopy (SEM) measurements of their cross-section images. Those SEM images have been treated by the software IFME®, which provides the parameters of asymmetry and irregularity of the membranes. The surface of the membranes has been analyzed by atomic force microscopy (AFM) and brightness analysis in order to calculate their roughness. A comparison of the same PSf membranes, but prepared by evaporation precipitation, or by using chloroform/methanol as solvent/non-solvent pair during the immersion precipitation step, has been also checked. That paper helps us to understand and predict which will be the best conditions to prepare the optimum membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号