首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
摄动有限差分方法研究进展   总被引:17,自引:1,他引:16  
高智 《力学进展》2000,30(2):200-215
振动有限差分(PFD)方法,既离散徽商项也离散非微商项(包括微商系数),在微商用直接差分近似的前提下提高差分格式的精度和分辨率.PFD方法包括局部线化微分方程的摄动精确数值解(PENS)方法和摄动数值解(PNS)方法以及考虑非线性近似的摄动高精度差分(PHD)方法。论述了这些方法的基本思想、具体技巧、若干方程(对流扩散方程、对流扩散反应方程、双曲方程、抛物方程和KdV方程)的PENS、PNS和PHD格式,它们的性质及数值实验.并与有关的数值方法作了必要的比较.最后提出值得进一步研究的一些课题.   相似文献   

2.
IntroductionTheplatesandtheshellswithvariablethicknessarewidelyusedinengineering .Theproblemaboutstaticshasbeenstudiedbymanyscholars;therearemanyRefs .[1 -4 ]inthisfield .Papersaboutnonlineardynamicsaremuchless[5 ,6 ].Inthispaper,selectingthemaximumamplitudeinthecenterofshallowconicalshellswithvariablethicknessasperturbationparameter,thenonlinearnaturalfrequencyofshallowconicalshellswithvariablethicknessisobtainedbymethodgiveninRef.[7] .Thenonlinearnaturalfrequencyisnotonlyconnectedwiththeva…  相似文献   

3.
Newton equations are dynamical systems on the space of fields. The solutions of a given equation which are curves of characteristic fields for its force are planar and have constant angular momentum. Separable solutions are characteristic with angular momentum equal to zero. A Newton equation is separable if and only if its characteristic equation is homogeneous. Separable equations correspond to invariants of homogeneous ordinary differential equations, and those associated with a given homogenous equation correspond to its generalized dilation symmetries. A Newton equation is compatible with the characteristic condition if and only if its characteristic equation is linear. Such equations correspond to invariants of linear ordinary differential equations. Those associated with a given linear equation correspond to the central force problems on its solution space. Regardless of compatibility, any Newton equation with a plane of characteristic fields has non-separable characteristic solutions.  相似文献   

4.
This paper studies the partial differential equation with a small coefficient in the highest-order item. This kind of equation is also named as boundary layer problem. The Burgers equation and modified Burgers equation are analyzed in this approach. First, these equations are transferred into the strong nonlinear ones, and then the corresponding strong nonlinear equations are solved based on the perturbation method. The results from the asymptotic method are comparable with those obtained from numerical computation. An erratum to this article is available at .  相似文献   

5.
T.C.T. Ting 《Wave Motion》2012,49(1):217-220
It is shown that there are anisotropic elastic materials that are capable of a non-uniform three-dimensional deformation with only one displacement component. For wave propagation, the equation of motion can be cast in the form of the differential equation for acoustic waves. For elastostatics, the equation of equilibrium reduces to Laplace’s equation. The material can be monoclinic, orthotropic, tetragonal, hexagonal or cubic. There are also anisotropic elastic materials that uncouple all three displacement components. The governing equation for each of the uncoupled displacement can be cast in the form of the differential equation for acoustic waves in the case of dynamic or Laplace’s equation in the case of static. The material can be orthotropic, tetragonal, hexagonal or cubic.  相似文献   

6.
A novel Navier-Stokes solver based on the boundary integral equation method is presented. The solver can be used to obtain flow solutions in arbitrary 2D geometries with modest computational effort. The vorticity transport equation is modelled as a modified Helmholtz equation with the wave number dependent on the flow Reynolds number. The non-linear inertial terms partly manifest themselves as volume vorticity sources which are computed iteratively by tracking flow trajectories. The integral equation representations of the Helmholtz equation for vorticity and Poisson equation for streamfunction are solved directly for the unknown vorticity boundary conditions. Rapid computation of the flow and vorticity field in the volume at each iteration level is achieved by precomputing the influence coefficient matrices. The pressure field can be extracted from the converged streamfunction and vorticity fields. The solver is validated by considering flow in a converging channel (Hamel flow). The solver is then applied to flow in the annulus of eccentric cylinders. Results are presented for various Reynolds numbers and compared with the literature.  相似文献   

7.
Solution algorithms for solving the Navier–Stokes equations without storing equation matrices are developed. The algorithms operate on a nodal basis, where the finite element information is stored as the co-ordinates of the nodes and the nodes in each element. Temporary storage is needed, such as the search vectors, correction vectors and right hand side vectors in the conjugate gradient algorithms which are limited to one-dimensional vectors. The nodal solution algorithms consist of splitting the Navier–Stokes equations into equation systems which are solved sequencially. In the pressure split algorithm, the velocities are found from the diffusion–convection equation and the pressure is computed from these velocities. The computed velocities are then corrected with the pressure gradient. In the velocity–pressure split algorithm, a velocity approximation is first found from the diffusion equation. This velocity is corrected by solving the convection equation. The pressure is then found from these velocities. Finally, the velocities are corrected by the pressure gradient. The nodal algorithms are compared by solving the original Navier–Stokes equations. The pressure split and velocity–pressure split equation systems are solved using ILU preconditioned conjugate gradient methods where the equation matrices are stored, and by using diagonal preconditioned conjugate gradient methods without storing the equation matrices. © 1998 John Wiley & Sons, Ltd.  相似文献   

8.
The theory of relativistic analytical mechanics of the rotational systems   总被引:4,自引:0,他引:4  
I'IntroductionThespinningmotionisintrinsicattributeofmicroscopicparticle.In1979,R.BengtssonandS.Frauendorfaccuratlymeasuredthemaximumvolumesofthespinningrotativevelocityof14kindsofnucleons,andtheresultsshowedthatthemaximumvolumesofthespinningrotativevelocityofeachnucleonaredifferent[ll.Withthede\'elopingofmodernscienceandtechnology,moreandmoreexperimentalfactsrelatedtothehighspeedrotationquestions,theEinstein'srelativitytheoryandtherotationaltheoryofclassicalmechanicsarenotsuitabletothesepro…  相似文献   

9.
The wave equation model, originally developed to solve the advection–diffusion equation, is extended to the multidimensional transport equation in which the advection velocities vary in space and time. The size of the advection term with respect to the diffusion term is arbitrary. An operator-splitting method is adopted to solve the transport equation. The advection and diffusion equations are solved separate ly at each time step. During the advection phase the advection equation is solved using the wave equation model. Consistency of the first-order advection equation and the second-order wave equation is established. A finite element method with mass lumping is employed to calculate the three-dimensional advection of both a Gaussian cylinder and sphere in both translational and rotational flow fields. The numerical solutions are accurate in comparison with the exact solutions. The numerical results indicate that (i) the wave equation model introduces minimal numerical oscillation, (ii) mass lumping reduces the computational costs and does not significantly degrade the numerical solutions and (iii) the solution accuracy is relatively independent of the Courant number provided that a stability constraint is satisfied. © 1997 by John Wiley & Sons, Ltd.  相似文献   

10.
The vertical two-dimensional non-hydrostatic pressure models with multiple layers can make prediction more accurate than those obtained by the hydrostatic pres-sure assumption. However, they are time-consuming and unstable, which makes them unsuitable for wider application. In this study, an efficient model with a single layer is developed. Decomposing the pressure into the hydrostatic and dynamic components and integrating the x-momentum equation from the bottom to the free surface can yield a horizontal momentum equation, in which the terms relevant to the dynamic pressure are discretized semi-implicitly. The convective terms in the vertical momentum equation are ignored, and the rest of the equation is approximated with the Keller-box scheme. The velocities expressed as the unknown dynamic pressure are substituted into the continuity equation, resulting in a tri-diagonal linear system solved by the Thomas algorithm. The validation of solitary and sinusoidal waves indicates that the present model can provide comparable results to the models with multiple layers but at much lower computation cost.  相似文献   

11.
This paper is concerned with the time fractional Sharma–Tasso–Olver (FSTO) equation, Lie point symmetries of the FSTO equation with the Riemann–Liouville derivatives are considered. By using the Lie group analysis method, the invariance properties of the FSTO equation are investigated. In the sense of point symmetry, the vector fields of the FSTO equation are presented. And then, the symmetry reductions are provided. By making use of the obtained Lie point symmetries, it is shown that this equation can transform into a nonlinear ordinary differential equation of fractional order with the new independent variable ξ=xt ?α/3. The derivative is an Erdélyi–Kober derivative depending on a parameter α. At last, by means of the sub-equation method, some exact and explicit solutions to the FSTO equation are given.  相似文献   

12.
高占鹏 《力学进展》1991,21(2):176-189
本文综述了爆炸力学计算中涉及的实际介质的状态方程,这些物质结构复杂,其描述方法与金属的状态方程有些不同.用物理力学观点及半经验、半理论方法进行描述.①用普遍的热力学方法导出介质的状态方程表达式,并用实测数据计算了有关的参量;②Grneisen系数值的计算以及它与体积和温度的关系;③多孔介质的优态方程;④从理论上系统地导出了波后卸载方程;⑤探讨了原予统计模型的边界势.   相似文献   

13.
弹性力学中一种新的边界轮廓法   总被引:3,自引:0,他引:3  
利用基本解的特性,将面力积分方程化成仅含有Cauchy主值积分的形式,基于这种边界积分方程,提出了一种新的边界轮廓法,对于三维问题,该方法只须计算沿边界单元界线的线积分,对二维问题,则只需计算边界单元两点的热函数之差,无须进行数值积分计算,实例计算说明该方法是有效的。  相似文献   

14.
An iterative adaptive equation multigrid solver for solving the implicit Navier–Stokes equations simultaneously with tri-tree grid generation is developed. The tri-tree grid generator builds a hierarchical grid structur e which is mapped to a finite element grid at each hierarchical level. For each hierarchical finite element multigrid the Navier–Stokes equations are solved approximately. The solution at each level is projected onto the next finer grid and used as a start vector for the iterative equation solver at the finer level. When the finest grid is reached, the equation solver is iterated until a tolerated solution is reached. The iterative multigrid equation solver is preconditioned by incomplete LU factorization with coupled node fill-in. The non-linear Navier–Stokes equations are linearized by both the Newton method and grid adaption. The efficiency and behaviour of the present adaptive method are compared with those of the previously developed iterative equation solver which is preconditioned by incomplete LU factorization with coupled node fill-in.  相似文献   

15.
Longitudinal mechanical waves in biomembranes are described by a Boussinesq-type wave equation. It is shown that in this case the nonlinearities are of a different type compared with conventional models of solids. The governing equation analysed in this paper is the improved Heimburg–Jackson model with two dispersive terms. The soliton-type solutions of such a wave equation are found and analysed. The existence of solitons depends on the ratio of nonlinear terms and the width of solitons is governed by dispersive terms.  相似文献   

16.
变深度浅水域中非定常船波   总被引:1,自引:0,他引:1  
陈波  吴建康 《力学学报》2003,35(1):64-68
以Green—Naghdi(G—N)方程为基础,采用波动方程/有限元法计算船舶经过变深度浅水域时非定常波浪特性.把运动船舶对水面的扰动作为移动压强直接加在Green-Naghdi方程里,以描述运动船体和水面的相互作用.以Series60 CB=0.6船为算例,给出自由面坡高,波浪阻力在船舶经过一个水下凸包时变化规律,并与浅水方程的结果进行了比较.计算结果表明,当船舶经过凸包时,波浪阻力先增加,后减少,并逐渐趋于正常.同时发现,当船速小于临界速度时(Fr=√gh<1.0),G—N方程给出的船后尾波比浅水方程的结果明显,波浪阻力也比浅水方程的结果有所提高,频率散射必须考虑.当船速大于临界速度时(Fr=√gh>1.0),G—N方程的计算结果与浅水方程差别不大,频率散射的影响可以忽略.  相似文献   

17.
In the present work a new iterative method for solving the Navier-Stokes equations is designed. In a previous paper a coupled node fill-in preconditioner for iterative solution of the Navier-Stokes equations proved to increase the convergence rate considerably compared with traditional preconditioners. The further development of the present iterative method is based on the same storage scheme for the equation matrix as for the coupled node fill-in preconditioner. This storage scheme separates the velocity, the pressure and the coupling of pressure and velocity coefficients in the equation matrix. The separation storage scheme allows for an ILU factorization of both the velocity and pressure unknowns. With the inner-outer solution scheme the velocity unknowns are eliminated before the resulting equation system for the pressures is solved iteratively. After the pressure unknown has been found, the pressures are substituted into the original equation system and the velocities are also found iteratively. The behaviour of the inner-outer iterative solution algorithm is investigated in order to find optimal convergence criteria for the inner iterations and compared with the solution algorithm for the original equation system. The results show that the coupled node fill-in preconditioner of the original equation system is more efficient than the coupled node fill-in preconditioner of the reduced equation system. However, the solution technique of the reduced equation system revals properties which may be advantageous in future solution algorithms.  相似文献   

18.
In this present work, the non-linear behavior of a single-link flexible visco-elastic Cartesian manipulator is studied. The temporal equation of motion with complex coefficients of the system is obtained by using D’Alembert's principle and generalized Galarkin method. The temporal equation of motion contains non-linear geometric and inertia terms with forced and non-linear parametric excitations. It may also be found that linear and non-linear damping terms originated from the geometry of the large deformation of the system exist in this equation of motion. Method of multiple scales is used to determine the approximate solution of the complex temporal equation of motion and to study the stability and bifurcation of the system. The response obtained using method of multiple scales are compared with those obtained by numerically solving the temporal equation of motion and are found to be in good agreement. The response curves obtained using viscoelastic beams are compared with those obtained from a linear Kelvin-Voigt model and also with an equivalent elastic beam. The effect of the material loss factor, amplitude of base excitation, and mass ratio on the steady state responses for both simple and subharmonic resonance conditions are investigated.  相似文献   

19.
Analytical solutions for some nonlinear evolution equations   总被引:1,自引:0,他引:1  
IntroductionItiswell_knownthatmanyimportantdynamicsprocessescanbedescribedbyspecificnonlinearpartialdifferentialequations .Whenanonlinearpartialdifferentialequationisusedtodescribeaphysicalparameterthatshowssomekindsofpropagationoraggregationproperties,oneofthemostimportantphysicalmotivationsistosolvethepartialdifferentialequationwithacertaintypeoftravellingwavesolution .Inthepastseveraldecades,therehavebeenmanyattemptsinthisfieldbothbymathematiciansandphysicists[1]- [16 ],however,duetothecomp…  相似文献   

20.
Modeling transverse vibration of nonlinear strings is investigated via numerical solutions of partial-differential equations and an integro-partial-differential equation. By averaging the tension along the deflected string, the classic nonlinear model of a transversely vibrating string, Kirchhoff’s equation, is derived from another nonlinear model, a partial-differential equation. The partial-differential equation is obtained via neglecting longitudinal terms in a governing equation for coupled planar vibration. The finite difference schemes are developed to solve numerically those equations. An index is proposed to compare the transverse responses calculated from the two models with the transverse component calculated from the coupled equation. A steel string and a rubber string are treated as examples to demonstrate the differences between the two models of transverse vibration and their deviation from the full model of coupled vibration. The numerical results indicate that the differences increase with the amplitude of vibration. Both models yield satisfactory results of almost the same precision for vibration of small amplitudes. For large amplitudes, the Kirchhoff equation gives better results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号