首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Multiple-injection affinity capillary electrophoresis (MIACE) is used to determine binding constants (K b) between receptors and ligands using as model systems vancomycin and teicoplanin from Streptomyces orientalis and Actinoplanes teichomyceticus, respectively, and their binding to D-Ala-D-Ala peptides and carbonic anhydrase B (CAB. EC 4.2.1.1) and the binding of the latter to arylsulfonamides. A sample plug containing a non-interacting standard is first injected followed by multiple plugs of sample containing the receptor and then a final injection of sample containing a second standard. Between each injection of sample, a small plug of buffer is injected which contains an increasing concentration of ligand to effect separation between the multiple injections of sample. Electrophoresis is then carried out in an increasing concentration of ligand in the running buffer. Continued electrophoresis results in a shift in the migration time of the receptor in the sample plugs upon binding to their respective ligand. Analysis of the change in the relative migration time ratio (RMTR) or electrophoretic mobility (μ) of the resultant receptor–ligand complex relative to the non-interacting standards, as a function of the concentration of ligand yields a value for K b. The MIACE technique is a modification in the ACE method that allows for the estimation of binding affinities between biological interactions on a timescale faster than that found for standard ACE. In addition sample volume requirements for the technique are reduced compared to traditional ACE assays. These findings demonstrate the advantage of using MIACE to estimate binding parameters between receptors and ligands.  相似文献   

2.
An estimation method for determination of binding constants of receptors to ligands by affinity capillary electrophoresis was evaluated. On the basis of the theories of pseudostationary phase or so-called dynamic stationary phase, the retention factor (k) was used to represent the interaction between the receptor and ligand. k could be easily deduced from the migration times of the ligand and the receptor. Then, with the linear relationship of k versus the concentration of ligand in the running buffer, the binding constant K b was calculated from the slope and intercept. In order to test its feasibility, the calculation method was demonstrated using three model systems: the interactions between vancomycin and N-acetyl-d-Ala-d-Ala, ristocetin and N-acetyl-d-Ala-d-Ala, and carbonic anhydrase B and an arylsulfonamide. Estimated binding constants were compared with those determined by other techniques. The results showed that this estimation method was reliable. This calculation method offers a simple and easy approach to estimating binding constants of ligands to receptors.  相似文献   

3.
4.
Brown A  Morales C  Gomez FA 《Talanta》2008,74(4):605-612
In this paper, we describe the development of a microfluidic/capillary electrophoresis (CE) technique employing partial filling affinity capillary electrophoresis (PFACE) to estimate binding constants of ligands to receptors using as model systems carbonic anhydrase B (CAB, EC 4.2.1.1) and vancomycin from Streptomyces orientalis. Using multilayer soft lithography (MSL), a microfluidic device (MD) consisting of fluid and control channels is fabricated and fitted with an external capillary column. Multiple flow channels allows for manipulation of a zone of ligand and sample containing receptor and non-interacting standards into the MD and subsequently into the capillary column. Upon electrophoresis the sample components migrate into the zone of ligand where equilibrium is established. Changes in migration time of the receptor are used in the analysis to obtain a value for the binding interaction. The manipulation of small volumes of solution on the MD minimizes the need of time-consuming pipetting steps.  相似文献   

5.
This work demonstrates the use of multiple-step ligand injection affinity capillary electrophoresis (ACE) using two model systems: vancomycin from Streptomyces orientalis and carbonic anhydrase B (CAB, EC 4.2.1.1). In this technique a sample plug of receptor and non-interacting standards is injected by pressure and electrophoresed in a buffer containing a given concentration of ligand. The sequence is repeated for all concentrations of ligand generating a single electropherogram containing a series of individual sample plugs superimposed on environments of buffer containing increasing concentrations of ligand. Analysis of the change in the relative migration time ratio, RMTR, relative to the non-interacting standards, as a function of the concentration of the ligand, yields a value for the binding constant. A competitive assay using the technique is also demonstrated using neutral ligands for CAB. These values agree well with those estimated using other binding and ACE techniques. Data demonstrating the quantitative potential of this method are presented.  相似文献   

6.
This work details the determination of the minimal injection time of ligand required in flow-through partial-filling affinity capillary electrophoresis (FTPFACE) to estimate binding constants of ligands to receptors. Two model systems are examined in this study: carbonic anhydrase B (CAB, EC 4.2.1.1) and arylsulfonamides, and vancomycin from Streptomyces orientalis and d-Ala-d-Ala peptides. Using CAB, a minimal injection time of 0.07 min at high pressure was determined that provided for the accurate and reproducible measurement of binding constants. In the FTPFACE technique, the capillary is first partially filled with a zone of ligand followed by a sample plug containing receptor and non-interacting standards. Upon application of a voltage the receptor and standards flow into the zone of ligand where a dynamic equilibrium is achieved between receptor and ligand. Continued electrophoresis results in the receptor and standards flowing through the domain of the ligand plug prior to detection. Analysis of the change in the relative migration time ratio (RMTR) of the receptor, relative to the non-interacting standards, as a function of the concentration of ligand, yields a value for the binding constant. In the present study, variable injection times of 4-carboxybenzenesulfonamide (CBSA) were examined to determine the minimal injection time needed to establish an equilibrium between CAB and ligand. A mathematical relationship was derived that correlated injection time and ligand concentration to the change in RMTR and comparisons made between the experimental and calculated values. Binding constants were obtained for a series of arylsulfonamide ligands and d-Ala-d-Ala terminus peptides to CAB and Van, respectively. The results support the use of FTPFACE to estimate affinity constants under variable experimental conditions.  相似文献   

7.
Partial filling multiple injection affinity capillary electrophoresis (PFMIACE) is used to determine binding constants between vancomycin (Van) from Streptomyces orientalis, teicoplanin (Teic) from Actinoplanes teicomyceticus and ristocetin (Rist) from Nocardia lurida to d-Ala-d-Ala terminus peptides and carbonic anhydrase B (CAB, E.C.4.2.1.1) to arylsulfonamides. Two variations of PFMIACE are described herein. In the first technique, the capillary is partially filled with ligand at increasing concentrations, a non-interacting standard, three or four separate plugs of receptor each separated by small plugs of buffer, a plug containing a second non-interacting standard, and then electrophoresed in buffer. Upon continued electrophoresis, equilibrium is established between the ligand and receptors causing a shift in the migration time of the receptors with respect to the non-interacting standards. This change in migration time is utilized for estimating multiple binding constants (Kb) for the same interaction. In the second technique, separate plugs of sample containing non-interacting standards, peptide one, buffer, and peptide two, were injected into the capillary column. The capillary is partially filled with a series of buffers containing an antibiotic at increasing concentrations and electrophoresed. Peptides migrate through the column at similar electrophoretic mobilities since their charge-to-mass ratios are approximately the same but remain as distinct zones due to the buffer plug between peptides. Upon electrophoresis, the plug of antibiotic flows into the peptide plugs affecting a shift in the migration time of the peptides with respect to the non-interacting standards occurs due to formation of the of the antibiotic-peptide complex. The shift in the migration time of the peptides upon binding to the antibiotic is used for the Scatchard analysis and measurement of a Kb. The PFMIACE technique expands the functionality and potential of ACE as an analytical tool to examine receptor-ligand interactions. In PFMIACE, a smaller amount of sample is required in the assay compared to both conventional ACE and MIACE. Furthermore, a wide array of data is obtained from a single experiment, thus, expediting the assay of biological species.  相似文献   

8.
Identifying and characterizing small-molecule inhibitors of protein-protein interactions is of high interest for drug discovery and for chemical genetics studies of biological pathways. Very often, initial hits or first-generation compounds have low micromolar dissociation constants and cause line broadening in NMR spectra. It is very important for subsequent structure-based compound optimization to know if this line broadening is caused by intermediate exchange of the dissociation kinetics only or in addition by multiple binding modes. Here, we present an approach of how to distinguish these two situations and demonstrate its experimental application. Two very similar small-molecule ligands of Bcl-xL are considered that cause both severe line broadening of interface residues. We show that one compound exhibits single-mode binding, and broadening is just due to dissociation kinetics in the intermediate exchange regime, and the line broadening can be overcome by providing excess ligand. In the other case, line broadening is due to dissociation kinetics and exchange between multiple bound conformations, and broadening cannot be overcome by providing excess ligand. The procedures used are very general and can also be applied to characterizing protein-protein and protein-nucleic acid interactions.  相似文献   

9.
This work evaluates the concept of a partial-filling technique in affinity capillary electrophoresis (ACE) using two model systems: vancomycin from Streptomyces orientalis and carbonic anhydrase B (CAB, EC 4.2.1.1). In this technique the capillary is first partially-filled with ligand followed by a sample of receptor and non-interacting standard and electrophoresed. Analysis of the change in the mobility ratio, M, of the receptor, relative to the non-interacting standard, as a function of the concentration of the ligand, yields a value for the binding constant. These values agree well with those estimated using other binding and ACE techniques. Data demonstrating the quantitative potential of this method is presented.  相似文献   

10.
ACE on a microchip (MC-ACE) is introduced as a fast and reliable method to determine binding affinities. It is based on monitoring the change in the ionic mobility of a receptor upon binding to a ligand, or vice versa. The method is complementary to other standard methods for binding affinity determinations, like isothermal titration calorimetry (ITC), NMR, UV-Vis spectroscopy, etc. and allows for affinity studies of weak to strong binding interactions. The method is attractive since it principally allows for the analysis of the binding affinity of multiple receptors to a given ligand and requires comparatively small quantities of the binding partners (particularly in comparison to affinity measurements on capillary). We demonstrate the applicability of MC-ACE for the determination of the binding affinities between acid-rich diketopiperazine receptors and basic tripeptides in aqueous solution.  相似文献   

11.
A method for predicting the binding mode of a series of ligands is proposed. The procedure relies on three-dimensional quantitative structure-activity relationships (3D-QSAR) and does not require structural knowledge of the binding site. Candidate alignments are automatically built and ranked according to a consensus scoring function. 3D-QSAR analysis based on the selected binding mode enables affinity prediction of new drug candidates having less than 10 rotatable bonds.  相似文献   

12.
This work evaluates the use of a competitive binding assay using flow-through partial-filling affinity capillary electrophoresis (FTPFACE) to estimate binding constants of neutral ligands to a receptor. We demonstrate this technique using, as a model system, carbonic anhydrase B (CAB, EC 4.2.1.1) and arylsulfonamides. In this technique, the capillary is first partially filled with a negatively charged ligand, a sample containing CAB and two noninteracting standards, and a neutral ligand, then electrophoresed. Upon application of a voltage the sample plug migrates into the plug of negatively charged ligand (L(-)) resulting in the formation of a CAB-L(-) complex. Continued electrophoresis results in mixing between the neutral ligand (L(0)) and the CAB-L(-) complex. L(0) successfully competes out L(-) to form the new CAB-L(0) complex. Analysis of the change in the relative migration time ratio (RMTR) of CAB relative to the noninteracting standards, as a function of neutral ligand concentration, yields a value for the binding constant. These values are in agreement with those estimated using other binding and ACE techniques. Data demonstrating the quantitative potential of this method is presented.  相似文献   

13.
The prediction of the binding free energy between a ligand and a protein is an important component in the virtual screening and lead optimization of ligands for drug discovery. To determine the quality of current binding free energy estimation programs, we examined FlexX, X-Score, AutoDock, and BLEEP for their performance in binding free energy prediction in various situations including cocrystallized complex structures, cross docking of ligands to their non-cocrystallized receptors, docking of thermally unfolded receptor decoys to their ligands, and complex structures with "randomized" ligand decoys. In no case was there a satisfactory correlation between the experimental and estimated binding free energies over all the datasets tested. Meanwhile, a strong correlation between ligand molecular weight-binding affinity correlation and experimental predicted binding affinity correlation was found. Sometimes the programs also correctly ranked ligands' binding affinities even though native interactions between the ligands and their receptors were essentially lost because of receptor deformation or ligand randomization, and the programs could not decisively discriminate randomized ligand decoys from their native ligands; this suggested that the tested programs miss important components for the accurate capture of specific ligand binding interactions.  相似文献   

14.
Small organic molecules can assume conformations in the protein-bound state that are significantly different from those in solution. We have analyzed the conformations of 21 common torsion motifs of small molecules extracted from crystal structures of protein-ligand complexes and compared them with their torsion potentials calculated by an ab initio DFT method. We find a good correlation between the potential energy of the torsion motifs and their conformational distribution in the protein-bound state: The most probable conformations of the torsion motifs agree well with the calculated global energy minima, and the lowest torsion-energy state becomes increasingly dominant as the torsion barrier height increases. The torsion motifs can be divided into 3 groups based on torsion barrier heights: high (>4 kcal/mol), medium (2-4 kcal/mol), and low (<2 kcal/mol). The calculated torsion energy profiles are predictive for the most preferred bound conformation for the high and medium barrier groups, the latter group common in druglike molecules. In the high-barrier group of druglike ligands, >95% of conformational torsions occur in the energy region <4 kcal/mol. The conformations of the torsion motifs in the protein-bound state can be modeled by a Boltzmann distribution with a temperature factor much higher than room temperature. This high-temperature factor, derived by fitting the theoretical model to the experimentally observed conformation occurrence of torsions, can be interpreted as the perturbation that proteins inflict on the conformation of the bound ligand. Using this model, it is calculated that the average strain energy of a torsion motif in ligands bound to proteins is approximately 0.6 kcal/mol, a result which can be related to the lower binding efficiency of larger ligands with more rotatable bonds. The above results indicate that torsion potentials play an important role in dictating ligand conformations in both the free and the bound states.  相似文献   

15.
A recent method for estimating ligand binding affinities is extended. This method employs averages of interaction potential energy terms from molecular dynamics simulations or other thermal conformational sampling techniques. Incorporation of systematic deviations from electrostatic linear response, derived from free energy perturbation studies, into the absolute binding free energy expression significantly enhances the accuracy of the approach. This type of method may be useful for computational prediction of ligand binding strengths, e.g., in drug design applications.  相似文献   

16.
《Chemistry & biology》1998,5(8):R193-R203
Scavenger receptors are a diverse family of proteins that share a common property - the binding of modified lipoprotein - but they have recently been shown to recognise a diverse range of ligands. Understanding the molecular interaction of receptor-ligand binding should provide insight into how scavenger receptors contribute to important biological processes.  相似文献   

17.
High-performance monolithic disk affinity chromatography was applied to the investigation of formation of complexes between (1) complementary polyriboadenylic and polyribouridylic acids, e.g. poly(A) and poly(U), respectively, (2) poly(A) and synthetic polycation poly(allylamine), pAA. Polyriboadenylic acid and poly(allylamine) were immobilized on macroporous disks (CIM disks). Quantitative parameters of affinity interactions between macromolecules were established using frontal analysis at different flow rates.  相似文献   

18.
The development and validation of a new knowledge based scoring function (SIScoreJE) to predict binding energy between proteins and ligands is presented. SIScoreJE efficiently predicts the binding energy between a small molecule and its protein receptor. Protein-ligand atomic contact information was derived from a Non-Redundant Data set (NRD) of over 3000 X-ray crystal structures of protein-ligand complexes. This information was classified for individual "atom contact pairs" (ACP) which is used to calculate the atomic contact preferences. In addition to the two schemes generated in this study we have assessed a number of other common atom-type classification schemes. The preferences were calculated using an information theoretic relationship of joint entropy. Among 18 different atom-type classification schemes "ScoreJE Atom Type set2" (SATs2) was found to be the most suitable for our approach. To test the sensitivity of the method to the inclusion of solvent, Single-body Solvation Potentials (SSP) were also derived from the atomic contacts between the protein atom types and water molecules modeled using AQUARIUS2. Validation was carried out using an evaluation data set of 100 protein-ligand complexes with known binding energies to test the ability of the scoring functions to reproduce known binding affinities. In summary, it was found that a combined SSP/ScoreJE (SIScoreJE) performed significantly better than ScoreJE alone, and SIScoreJE and ScoreJE performed better than GOLD::GoldScore, GOLD::ChemScore, and XScore.  相似文献   

19.
20.
The model binding of the glycopeptide antibiotic teicoplanin (Teic) from Actinoplanes teichomyceticus, immobilized on magnetic microspheres, to d-Ala-d-Ala terminus peptides was assessed using microchip capillary electrophoresis (MCE) with continuous frontal analysis (FA). Teic is closely related to vancomycin (Van), historically, the drug of last resort used to treat many Gram-positive bacterial infections. Glycopeptide antibiotics inhibit bacterial growth by binding to the d-Ala-d-Ala terminus on the cell wall of Gram-positive bacteria via hydrogen bonds, thereby preventing the enzyme-mediated cross-linking of peptidoglycan and eventual cell death. In this work direct and competitive bead-based assays in a microfluidic chip are demonstrated. The binding constants obtained using the technique are comparable with values reported in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号