首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A review of the biosynthesis of chlorophylls and bacteriochlorophylls from protoporphyrin IX with 235 references. The literature on the enzymes magnesium chelatase, S-adenosyl-L-methionine:magnesium protoporphyrin IX O-methyltransferase, magnesium-protoporphyrin IX monomethyl ester oxidative cyclase, protochlorophyllide oxidoreductase, chlorophyll synthase, bacteriochlorophyll synthase, protochlorophyllide 8-vinyl reductase and chlorophyll a oxidase from 1989 is discussed.  相似文献   

2.
In the mustard seedling (Sinapis alba L.) the appearance of photodetectable phytochrome and synthesis of relatively abundant cytosolic hemoproteins (nitrite reductase, ascorbate peroxidase) are stimulated rather than impaired by a photooxidative treatment of the plastids. While the ability to synthesize protoporphyrin IX from exogenous 5-aminolevulinic acid was preserved in the photooxidatively damaged plants, protochlorophyll and chlorophyll accumulation was no longer possible. It appears from our data that in higher plants the pathway of tetrapymole synthesis up to protoporphyrin IX is not adversely affected by a photooxidative treatment of the plastids that destroys the capacity of the organelle to synthesize chlorophyll.  相似文献   

3.
Abstract— The exact quantity of phytochrome in crude homogenates (2kS) prepared from embryonic axes of Pisum sativum during imbibition at 25°C on 0,2% agar was estimated optically. The problem of the scattering factor was solved by using highly purified phytochrome as an internal standard. The content of phytochrome protein moiety in diluted samples of the crude homogenates of the axes was also determined by an enzyme-linked immunosorbent assay (ELISA). Phytochrome was not detectable either spectropho-tometrically or immunochemically in 2kS of dormant dry axes. Embryonic axes quickly absorbed water during the first1–2 h after the start of imbibition, after which the fresh weight stayed at a constant level for a further 10 h. The content of spectrophotometrically detectable phytochrome increased during imbibition in the dark, reaching about 0.2 μ.g/axis after 12 h. The amount of phytochrome in 2kS of axes in the light was so small that only about 0.05 μg/axis was detected after 12 h. The content of immunochemically detectable phytochrome greatly increased up to ca. 0.5 μg/axis after 12 h of dark incubation. In 2kS of the light-grown axes the content of the phytochrome protein was ca. one fourth lower than in dark-grown axes. We conclude that the appearance and increase of phytochrome in fragments of imbibed embryonic axes were caused by de novo synthesis and that the contents of both photometrically detectable phytochrome and its protein moiety in the light-grown samples were lower than those in the dark throughout the early germination process.  相似文献   

4.
Abstract— The changes in the chromophore structure of pea phytochrome during phototransformation in vitro from the red-light-absorbing form (Pr) to the far-red-light-absorbing form (Pfr), and from Pfr to Pr, were analysed in terms of wavelength and oscillator strength of absorption, using the zero-differential overlap approximation of the molecular orbital theory for electrons. The effect of a point-charge and a point-dipole on the optical absorption of phytochromobilin intermediates were examined using the stationary perturbation theory for degenerate states. The results indicate that the cis-trans photoisomerization of the pyrrole ring D, if any, occurred within 10 μs after a laser-flash excitation of the phytochrome, and that the conformations of phytochromobilin and the protein moiety of phytochrome were not significantly changed during the period of examination of phototransformation in either direction.  相似文献   

5.
In the cotyledons of the mustard (Sinapis ah L.) seedling the development of the capacity for photophosphorylation is strongly influenced by pretreatment of the seedling with red light pulses. The red light acts through phytochrome. After a red light pretreatment the capacity for photophosphorylation increases linearly with the chlorophyll content, at least up to 30 min after the onset of continuous white light. It is proposed that the reaction chain required for photophosphorylation is completed under the influence of phytochrome even in the absence of chlorophyll. As soon as chlorophyll becomes available photophosphorylation functions instantaneously. Without a red light pretreatment there is a lag of more than 15 min before photophosphorylation becomes detectable after the onset of continuous white light even though chlorophyll a is available. Although phytochrome strongly influences the rate of chlorophyll accumulation as well it is improbable that the control by phytochrome of development of photophosphorylation and of chlorophyll accumulation are causally connected.  相似文献   

6.
A model for the molecular structure and orientation of red-light absorbing form of phytochrome (P,) chromophores in a dimeric molecular model of Pr is proposed. A chromophore model with probable molecular structures was generated to reproduce the absorption spectrum produced by its π-electron conjugating system. The model has C5-Z, syn, C10-E, anti and C15-Z, syn configurations and a protonation at a C-ring nitrogen. Orientation of the chromophore model in the dimeric phytochrome molecular was analyzed by displaying the atoms of the chromophore, the coordinates of which were converted into those with respect to the molecular axes to the dimeric molecule, on a 3-D graphic workstation. The conversions were performed by using the azimuthal angles between the Z axis of the dimeric molecule (axis of 2-fold rotational symmetry) and the dipole moments of the electronic transition at the blue- (384 nm) and red- (667 nm) absorbing bands of the chromophore, which were calculated as 55.5° and 59.3°, respectively, based on linear dichroism of the oriented phytochrome molecules. The result demonstrates that the long axis of the P, chromophore lies almost parallel to the Y axis of the molecular model, and that the tetrapyrrolic chromophore is well contained within the flat chromophoric domain without protruding from it, a configuration that assures that the chromophore is protected against aqueous environments. The model may explain the rotation angle of the transition moment of the red-absorbing band, induced by the phototransformation from Pr to Prr which we measured as smaller than that measured in nonoriented preparations by a photoselection technique. The model also suggests a molecular basis for the polarotropic response of phytochrome.  相似文献   

7.
THE ROLE OF HYDRATION IN THE PHOTOTRANSFORMATION OF PHYTOCHROME   总被引:1,自引:0,他引:1  
Abstract— Changes in the visible absorption spectrum and in phototransformation of phytochrome have been found to be associated with dehydration and rehydration. These spectral properties explain the previously reported rapid appearance of phytochrome in imbibing seeds. No evidence was found for the orientation of the phytochrome chromophore in gelatin films or in preparations subjected to a shearing force.  相似文献   

8.
Metalloporphyrin inhibitors of heme oxygenase may also have photosensitizing properties in vivo. To assess photoactivity in serum, the relative ability to mediate photooxidation of tryptophan or other oxidizable targets, presumably by singlet oxygen production, was measured for tin mesoporphyrin, zinc mesoporphyrin, and zinc deuteroporphyrin bisglycol in aqueous solution and when bound to human serum albumin. While tin mesoporphyrin sensitized at the greatest initial rate in aqueous solution, the zinc compounds sensitized at a greater initial rate in detergent micelles or when bound to albumin. There was minimal alteration of the tin mesoporphyrin during the time course of illumination in the Soret or visible absorption regions. The zinc compounds, however, proved to be extremely photolabile and were extensively destroyed by light; the photooxidized forms were found to be ineffective as inhibitors of heme oxygenase.  相似文献   

9.
Abstract— It is shown that in attached mustard cotyledons graded control of chlorophyll synthesis by physiologically active phytochrome (Pfr) and threshold control by Pfr of the 'potential capacity' to photophosphorylate are totally different phytochrome actions even though both controls are essential for the build-up of the same functional complex, the machinery for photophosphorylation. The essential findings are as follows: The action of Pfr (made by a 1 min red light pulse) on the capacity and efficiency of photophosphorylation is rapid—detectable after 15 min and completed after 30 min—whereas the action of Pfr on chlorophyll formation is slower—only detectable 45 min after the original red light pulse (R). Detailed escape studies (loss of full reversibility of the inductive effect of a R pulse by far-red) show that the effect of a R pulse on chlorophyll synthesis remains fully reversible for 45 min whereas the action of Pfr on the capacity for photophosphorylation is very fast (occurring within 2 min). Control of capacity for photophosphorylation is a threshold response (whereby the threshold value is approximately 1.25% Pfr based on total phytochrome at 36 h = 100%) whereas control by Pfr of chlorophyll synthesis is graded. Control of capacity for photophosphorylation by Pfr only operates if the hypocotyl hook is connected to the cotyledons for at least 2 min after the inductive R pulse, i.e. until full escape from reversibility has occurred, whereas chlorophyll formation in the cotyledons is not affected by the separation of hook and cotyledons.  相似文献   

10.
The rich source of heme within malarial parasites has been considered to underly the action specificity of artemisinin. We reasoned that increasing intraparasitic free heme levels might further sensitize the parasites to artemisinin. Various means, such as modulating heme synthesis, degradation, polymerization, or hemoglobin digestion, were tried to boost intracellular heme levels, and under several scenarios, free heme levels were significantly augmented. Interestingly, all results arrived at the same conclusion, i.e., elevating heme acted in a strongly negative way, impacting the antimalarial action of artemisinin, but exerted no effect on several other antimalarial drugs. Suppression of the elevated free heme level by introducing heme oxygenase expression effectively restored artemisinin potency. Consistently, zinc protoporphyrin IX/zinc mesoporphyrin, as analogues of heme, drastically increased free heme levels and, concomitantly, the EC50 values of artemisinin. We were unable to effectively mitigate free heme levels, possibly due to an unknown compensating heme uptake pathway, as evidenced by our observation of efficient uptake of a fluorescent heme homologue by the parasite. Our results thus indicate the existence of an effective and mutually compensating heme homeostasis network in the parasites, including an uncharacterized heme uptake pathway, to maintain a certain level of free heme and that augmentation of the free heme level negatively impacts the antimalarial action of artemisinin. Importance: It is commonly believed that heme is critical in activating the antimalarial action of artemisinins. In this work, we show that elevating free heme levels in the malarial parasites surprisingly negatively impacts the action of artemisinin. We tried to boost free heme levels with various means, such as by modulating heme synthesis, heme polymerization, hemoglobin degradation and using heme analogues. Whenever we saw elevation of free heme levels, reduction in artemisinin potency was also observed. The homeostasis of heme appears to be complex, as there exists an unidentified heme uptake pathway in the parasites, nullifying our attempts to effectively reduce intraparasitic free heme levels. Our results thus indicate that too much heme is not good for the antimalarial action of artemisinins. This research can help us better understand the biological properties of this mysterious drug.  相似文献   

11.
We have sequenced cDNA and genomic clones coding for phytochrome of the fern Selaginella. On the amino acid level, this phytochrome shares sequence homologies with phytochromes of higher plants which range between 62 (phytochrome B of Arabidopsis) and 55 (56)% [phytochrome C of Arabidopsis (Avena)]. Introns in the Selaginella gene are short and occupy positions known from phytochrome sequences of higher plants. A rooted phylogenetic tree based on mutation distances puts Selaginella phytochrome closest to the hypothetical ancestor. A similar tree arises if the tree is constructed with partial sequences (about 200 amino acids) around the chromophore attachment site. An extension of this tree by sequences of other cryptogamic plants (Mougeotia, Ceratodon, Psilotum) shows all these sequences including those of the phytochromes B and C of Arabidopsis on a branch, well separated from the branch formed by phytochromes known to accumulate in etiolated plants. The rooted phytochrome phylogenetic tree, however, is difficult to reconcile with the fossil record.  相似文献   

12.
Abstract— Development of the capacity for photophosphorylation (= total capacity for light-driven ATP formation) in the mustard ( Sinapis alba L.) cotyledons is strongly influenced by a red light pulse pretreatment which operates through phytochrome. The present report deals with several objections raised against the in situ assay of the rate of photophosphorylation. Experimental evidence is given in support of the assumption that the linear increase of the ATP content of the cotyledons as measured over 1.5 min after the onset of saturating white light (370 Wm-2) in fact represents the maximum rate of photophosphorylation ('capacity'). Moreover, it is confirmed that control by phytochrome of the development of the photophosphorylation capacity and of the capacity for chlorophyll synthesis are unrelated phenomena. The failure of development of the capacity for photophosphorylation in isolated cotyledons from dark-grown seedlings cannot be attributed to deficiencies of chlorophyll synthesis.
It is concluded that the photophosphorylation response is particularly useful to study the mechanism of phytochrome (Pfr) action in case of a response which involves a threshold reaction and an interorgan (hook→cotyledon) cooperation.  相似文献   

13.
The photoreaction between Pτ and the first detectable intermediate, lumi-R, of 124-kdalton oat phytochrome has been investigated at low temperatures. The temperature dependence of the quantum yields of the photoreactions, Pτ to lumi-R and lumi-R to Pτ, has been determined. From measurements over a temperature range from 119 to 155 K, an activation barrier of 3.6 ± 0.5 kJ mol 1 is found for the photoreaction of Pτ with 661-nm actinic light. A higher value (5.7 ± 0.7 kJ mol -1) is found for the photoreaction of lumi-R to Pτ. with 698-nm actinic light. Increased quantum yields are found in deuterated buffer solutions at low temperatures. The activation energies for deuterated phytochrome (3.2 ± 0.7 kJ mol–1 for Pτ with 661-nm irradiation and 6.2 ± 1.2 kJ mol-1 for lumi-R at 698-nm irradiation) are identical within the limits of error with those of protonated phytochrome. The lack of a deuterium effect for the activation energies favors the Z,E-isomerization rather than proton transfer or tautomerization for the chromophore photochemistry during Pτ⇄lumi-R conversion.  相似文献   

14.
RESONANCE RAMAN SPECTRA OF THE Pr-FORM OF PHYTOCHROME   总被引:1,自引:0,他引:1  
Abstract— Resonance Raman spectra of the Pr-form of oat phytochrome have been obtained at 77 K. Interference from phytochrome fluorescence is avoided by employing far-red 752 nm excitation. Vibrational assignments are suggested for the tetrapyrrole chromophore in phytochrome by comparison with previously published model compound spectra and by examining the characteristic shifts induced by deuteration of the pyrrole nitrogens. The lack of carbonyl intensity, the frequencies of the 1626 and 1644 cm-1 C=C stretching modes, and the presence of an intense mode at 1326 cm-1 are all consistent with a protonated structure for the tetrapyrrole chromophore in Pr. This suggests that the -50 nm red-shift of the protein-bound chromophore absorption compared to the chromophore in vitro is caused by protonation of the pyrrole nitrogen.  相似文献   

15.
STUDIES ON THE PROTEIN CONFORMATION OF PHYTOCHROME   总被引:7,自引:0,他引:7  
Abstract— The extinction coefficients for large rye phytochrome were found to be: Fluorescence and circular dichroism spectra of large- and small-molecular-weight rye phytochrome give no evidence for a protein conformational change on phototransformation of phytochrome. The large molecule has a fluorescence emission peak at 331 nm when excited at 290 nm, and an excitation peak for this emission at 288 nm. The circular dichroism spectra indicate that large rye phytochrome has about 17–20% a-helix content, 30%β-structure and 50% random coil, and that the small rye phytochrome has about 10–13%α-helix content. The ultraviolet difference spectra for large and small rye phytochrome are similar and differ from the difference spectrum of the small oat phytochrome in the relative size of the 296–298 nm peak. The difference spectra may reflect changes in chromophore absorbance and in the environment of amino acid residues near the chromophore, particularly of tyrosine, and perhaps of tryptophan and cysteine.  相似文献   

16.
Radish plants were grown in the presence of three different herbicides that interfere with the formation of the normal range of cyclic carotenoids, leading to an accumulation of acyclic biosynthetic intermediates, mainly phytoene (SAN 6706 and amitrole) and zeta-carotene (3852). Plants were then irradiated by four different light programs in order to gain more insight into the first steps of carotenoid biosynthesis and their control by light and phytochrome. In all cases, herbicide-treated and control, carotenoid biosynthesis was greatly enhanced by red light consistent with an effect of phytochrome on the early steps of the pathway. However, similar enhancement was also obtained after treatment with far-red light. Indeed with SAN 6706-treated plants synthesis of phytoene was stimulated to a much greater extent by far-red light given alone, than by red light. The involvement of phytochrome in the regulation of carotenoid biosynthesis appears not to be as simple as previously supposed.  相似文献   

17.
Abstract— Irradiation of small phytochrome from oat in its Pr form with 15 ns laser pulses of different wavelengths(605–655 nm) gave rise to a difference absorption with maxima at 400 and 685 nm for the first detectable transient. Bleaching of a 660 nm band was observed, non-recuperable up to 1 ms. The transient absorption has a lifetime of 70±15 μs at 273 K. The transient is tentatively identified as lumi-R and the conformation of its chromophore is postulated to be more extended than that of Pr. A deviation from the exponential decay of the lumi-R absorption at 284 and 300 K and the lack of observable enhancement of the far-red absorption within 1 ms are interpreted in terms of the appearance of still other intermediates on this time scale between lumi-R and Pfr phytochrome.  相似文献   

18.
Four genotypes of tomato (Lycopersicon esculentum Mill.) in the genetic background ‘Aha Craig’ were used: an aurea (au) mutant, deficient in the bulk light-labile phytochrome pool; a high pigment (hp) mutant, showing exaggerated phytochrome responses at the time of de-etiolation; the au,hp double mutant and the isogenic wild type (WT). A dramatic increase in plant height resulting from an increase in the length of all internodes for each of the genotypes studied was observed upon reduction of the red light: far-red light photon ratio (R:FR) from 6.90 to 0.13 by addition of FR for the whole photoperiod. A concomitant increase in leaf length was also observed. Since au and au,hp mutants, deficient in the bulk light-labile phytochrome pool, respond to this reduction in the R:FR these data demonstrate that the phytochrome pool that mediates this response is present and fully functional. Anthocyanin was detectable in the comparably developed young growing leaves of the WT and hp mutant under the high R:FR, but not in the au and au,hp mutants, suggesting that the potential for anthocyanin synthesis is correlated with the presence of the bulk light-labile phytochrome pool. The kinetics of anthocyanin decrease in the young growing leaves were investigated in the hp mutant and the results suggest a very rapid cessation of flavonoid biosynthesis upon reduction of the R:FR. The functions of different phytochrome types are discussed.  相似文献   

19.
Abstract —The quantitation of porphyrin and its photoproducts in biological samples is important in diverse applications including, but not limited to, tumor phototherapy. Differences in fluorescence properties, e.g., emission spectra and lifetimes, of the various components can be utilized to resolve the individual contributions. In this report time-resolved measurements using multifrequency phase and modulation rluorometry are employed to study mixtures of protoporphyrin IX and photoprotopor-phyrin. Individual lifetimes of 14.85 ns and 5.95 ns were determined for dioxane solutions of protoporphyrin IX and photoprotoporphyrin, respectively. These lifetime values were utilized to resolve the individual emission spectrum of each component in the mixture using the phase-resolved Huorometry technique.  相似文献   

20.
Abstract— Photoactivated protoporphyrin effects were studied on reticulocyte membranes and distinct intracellular activities. Membrane bound (Na + -K +)-ATPase activity and incorporation of 55Fe into heme were almost 80% inhibited at a low concentration of protoporphyrin (3 fiM). On the other hand, a much higher protoporphyrin concentration (15 nM) was needed to cause 80% inhibition of protein synthesis. By 15 JXM protoporphyrin and treatment with light, an initial leak of hemoglobin out of the cells was observed. Electron microscopic examination showed that the lytic effects seem to be a result of membrane damage which appeared as holes in the membrane. Heinz-body-like particles of condensed hemoglobin were observed in the protoporphyrin-treated cells. The condensed hemoglobin spheres were shown to be bound to disrupted membranes prepared from photoactivated protoporphyrin-treated reticulocytes  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号