首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The temperature dependences of the molar heat capacity at constant pressure, Cp, of Pb5(Ge1?xSix)3O11 crystals with x=0, 0.39, and 0.45 in the range 5–300 K, as well as of their permittivity, dielectric losses, and the pyroelectric effect, have been measured. Experimental data on the temperature behavior of the heat capacity are presented in the form of a sum of two Debye and one Einstein terms, Cp(T)=0.405CD1D1=160 K, T)+0.53CD2D2=750 K, T)+0.046CEE=47 K, T). Besides a peak in the region of the ferroelectric Curie point Tc=450 K for crystals with x=0, the temperature dependences of the heat capacity did not reveal any other pronounced anomalies.  相似文献   

2.
The dielectric nonlinearity of ferroelectric Li2-x NaxGe4O9 crystals (0.2 ≤ x ≤ 0.3) is measured in the region of the phase transition temperatures. The ?(T) dependences for various values of the applied dc electric field E = and the ?(E =)T dependences at a constant temperature are studied in the Li2-x NaxGe4O9 crystals with T c > 300 K and T c < 300 K. It is shown that the Landau theory for second-order phase transitions describes the dielectric properties of the crystals with T c < 300 K and does not describe the behavior of the crystals with T c > 300 K. The results obtained lead to the conclusion that the different properties of the crystals with T c > 300 K are likely to be related to the changed structure of these crystals caused by a change in the ratio between the Li and Na atoms.  相似文献   

3.
The temperature dependences of the upper critical field B c2(T) and surface impedance Z(T) = R(T) + iX(T) have been measured in Ba1 ? x KxBiO3 single crystals with transition temperatures 6 ≤ T c ≤ 32 K (0.6 > x > 0.4). A transition from the BCS to an unusual type of superconductivity has been revealed: B c2(T) curves of the crystals with T c > 20 K have positive curvature (as in some HTSCs), and those of the crystals with T c < 15 K described by the usual Werthamer-Helfand-Hohenberg (WHH) formula. The R(T) and X(T) dependences of the crystals with T c ≈ 32 K and T c ≈ 11 K in the temperature range T ? T c are linear (as in HTSCs) and exponential (BCS), respectively. The experimental results are discussed using the extended saddle point model by Abrikosov.  相似文献   

4.
The infrared reflectivity spectra of spinel type mixed crystals Zn1−xCdxCr2S4 have been measured from 40 to 900 cm−1. Four or five bands were observed at both end members in the region of intermediate composition. The three bands in higher energy show one-mode behaviour and the other two bands show two-mode behaviour. The concentration dependences of these mode frequencies are interpreted by a model proposed already, in which the 2 basic units and the 6 force constants are contained. By comparing the force constants associated with the Zn-site in several spinels, it is suggested that the two-mode behaviour arises from the large difference in the force constants between the two end members. The Eg (260 cm−1) and T2g (160 cm−1) Raman modes for ZnCr2S4 were also observed and used for the determination of the force constants.  相似文献   

5.
Raman scattering in a natural FeS2 single crystal with the pyrite structure was investigated in the temperature range of 80–300 K. All five Raman-active modes E g , T g (1), T g (2), A g , and T g (3) were observed under normal conditions (T = 23°C). The influence of temperature on the Raman spectra was studied in the HH configurations (polarizations of the incident and scattered radiations are parallel), which made it possible to detect the strongest spectral lines A g and E g . Widths of modes E g and A g were substantially smaller than those given in previous publications. It was found that the temperature dependences of frequencies and widths (FWHM) of modes A g and E g are approximated well by the Klemens model, which describes the three-phonon scattering mechanism.  相似文献   

6.
The angular, temperature, and magnetic field dependences of the resistance recorded in the Hall effect geometry are studied for the rare-earth dodecaboride Tm1 ? x Yb x B12 solid solutions where the metal-insulator and antiferromagnetic-paramagnetic phase transitions are observed in the vicinity of the quantum critical point x c ?? 0.3. The measurements performed on high-quality single crystals in the temperature range 1.9?C300 K for the first time have revealed the appearance of the second harmonic contribution, a transverse even effect in these fcc compounds near the quantum critical point. This contribution a is found to increase drastically both under the Tm-to-ytterbium substitution in the range x > x c and with an increase in the external magnetic field. Moreover, as the Yb concentration x increases, a negative peak of a significant amplitude appears on the temperature dependences of the Hall coefficient R H(T) for the Tm1 ? x Yb x B12 compounds, in contrast to the invariable behavior R H(T) ?? const found for TmB12. The complicated activation-type behavior of the Hall coefficient is observed at intermediate temperatures for x ?? 0.5 with activation energies E g /k B ?? 200 K and E a/k B = 55?C75 K, and the sign inversion of R H(T) is detected at liquid-helium temperatures in the coherent regime. Renormalization effects in the electron density of states induced by variation of the Yb concentration are analyzed. The anomalies of the charge transport in Tm1 ? x Yb x B12 solid solutions in various regimes (charge gap formation, intra-gap many-body resonance, and coherent regime) are discussed in detail and the results are interpreted in terms of the electron phase separation effects in combination with the formation of nanosize clusters of rare earth ions in the cage-glass state of the studied dodecaborides. The data obtained allow concluding that the emergence of Yb-Yb dimers in the Tm1 ? x Yb x B12 cage-glass matrix is the origin of the metal-insulator transition observed in the achetypal strongly correlated electron system of YbB12.  相似文献   

7.
The absorption and luminescent properties of α-ZnAI2S4:V spinel type crystals in the temperature range 10-300 K are investigated. The spectra are assigned to the electronic transitions of trivalent vanadium ions located in octahedral sites. It is shown that at low temperatures the three main components of the revealed IR luminescence spectra are caused by the 1A1g(1G)→1Eg(1D), 1T2g(1D), 3T2g(3F)→3T1g(3F), and 1Eg(1D)→3T1g(3F) transitions. The observed dependencies of the emission components intensities on temperature are explained assuming that there is a phonon assisted tunnelling between 3T2g(3F) and 1Eg(1D) states. On temperature rise, the 3T2g(3F)→3T1g(3F) vibronic transitions suppress other emission channels, which leads to the enhancement of the integral luminescence intensity and to the broadening of the spectrum centred at λ=1.4 μm.  相似文献   

8.
Five (PbO)x(Bi2O3)0.2(B2O3)0.8−x glasses, where x = 0, 0.2, 0.3, 0.4 and 0.6, were prepared. The dilatometric glass transition temperature (Tg) was found in the region 470 (x = 0)≥ Tg ( °C) ≥ 347 (x = 0.6), and the density (ρ) varied within 4.57 (x = 0) ≤ ρ (g/cm3) ≤ 8.31 (x = 0.6). Raman spectra indicated the conversion of BO3 to BO4 entities for low x values but for x > 0.3, namely, for x → 0.6, back‐conversion occurred, most probably. From the measurements of the optical transmission on very thin bulk samples, the room temperature optical gap values (Eg) were determined to be in the range 4.03 (x = 0)≥ Eg (eV) ≥ 3.08 (x = 0.6). The temperature (T) dependence of the optical gap (Eg(T)) in the region 300 ≤ T(K) ≤ 600 was examined and approximated by a linear relationship of the form of Eg(T) = Eg(0)− γT, where γ × 10−4(eV/K) varied from 5.1 to 6.8. The non‐linear refractive index (n2) was estimated from the optical gap values and it was found to correspond to the n2 values calculated from the experimental third‐order non‐linear optical susceptibility taken from the literature. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
The temperature dependences of the permittivity ? and the false-color image patterns obtained by the rotating polarizer method for single crystals of (1 ? x)NaNbO3?x Gd1/3NbO3 (x = 0.003, 0.090) solid solutions with different degrees of diffuseness of the phase transition are investigated. A multifractal analysis of the false-color images has revealed anomalies in the temperature dependences of the parameter ? of the multifractal spectrum. For a sample with a sharp phase transition (x ≈ 0.003), the temperature of this anomaly is in good agreement with the temperature of the jumps in the permittivity ?(T) and birefringence. For an NNG crystal with x ≈ 0.09, which exhibits a diffuse maximum of ?(T), the temperatures of the anomalies of ?(T) differ in the central and peripheral regions, which correlates with the distribution of Gd over the crystal.  相似文献   

10.
The electron absorption spectrum of thin films of the Ag2ZnI4 complex compound is studied at photon energies of 3–6 eV. It is established that the interband absorption edge corresponds to an allowed direct transitions across the energy gap E g=3.7 eV. A strong exciton band is adjacent to the absorption edge at E ex=3.625 eV (80 K); in the 80–390 K range, the temperature behavior of the half-width Γ of this band is determined by the exciton-phonon interaction typical of quasi-one-dimensional excitons. At T≤390 K, a discontinuity in the slope of the E ex(T) and Γ(T) dependences is observed. This discontinuity is associated with the generation of Frenkel defects and is accompanied by the transfer of Ag ions to the interstitial sites and vacancies of the crystal lattice of the compound.  相似文献   

11.
The dielectric and electromechanical characteristics of the (1?x)PMN-xPZT ferroelectric ceramics have been obtained at different temperatures, amplitudes, and frequencies of the measuring field and at different bias field strengths. It is shown that this ferroelectric ceramics at low and infralow frequencies possesses pronounced relaxor properties in a certain temperature range and ferroelectric properties in other temperature range. The temperature and amplitude ranges have been determined, in which the permittivity ?′ either only decreases or first increases and then decreases with an increase in the measuring field amplitude E 0. The temperature ranges of existing the phases similar to the superparaelectric phase, dipole glass phase, and ferroelectric phase are evaluated from the temperature dependences of the coercive field E c (T) and the remanent polarization P r (T) and also from the reverse dependences of ?* and the electromechanical characteristics. The PZT concentration in the PMN-PZT system is determined, at which the electrostrictive constant M 11 is maximum. It is demonstrated that, in the neighborhood of the temperature at a maximum of ?′, the strain S 3 is quadratic in the field E =; that is, S 3=M 11 E 2.  相似文献   

12.
TheE g andT 2g acoustic phonon modes of the molecular crystals KBr0.96(CN)0.04 and KBr0.86(CN)0.14 have been investigated by inelastic neutron scattering at 6, 90 and 300 K. Clear resonances due to mode-mode coupling to molecular excitations were observed. In complementary ultrasonic experiments the elastic constants were found to pass through minima as a function of temperature. The results were quantitavely explained by a model which assumes simple forms of the molecular excitation spectrum. An alternative interpretation, though being only qualitative, postulates a freezing of the CN molecules into a glass-like phase.  相似文献   

13.
Ferromagnetic nanocomposites are the special case of metal composites; they are of practical interest for spintronics. Temperature dependences of resistivity ρ(T) and thermoelectric power α(T) of ferromagnetic nanocomposites with the composition Co x (Al2O3)100 ? x (36.6 ≤ x ≤ 52.5 at %) are investigated near the percolation threshold (x p ≈ 43.3 at %) in a temperature range of 77–300 K. Sizes of Co nanoparticles are no larger than 25 nm. Specific features are observed in the dependences α(T) in the form of a kink at T b ≈ 170 K. The analysis of the structural and electrical schematics as well as energy diagrams of percolation channels of electrons shows that only the diffusion thermoelectric power appears in Co nanoparticles, at which α(T) is the linear function. No mechanisms of the thermoelectric power caused by nanosizes of Co particles or by electron tunneling between them are found. The kink of the α(T) linear dependence is explained by the existence of the oxide shell of Co nanoparticles. It is assumed that the temperature dependences of energy barriers of oxide shells of metal nanoparticles (including ferromagnetic ones) in oxygen-containing dielectric matrices determine the features of α(T) and ρ(T) dependences of such nanocomposites.  相似文献   

14.
Temperature dependences of the longitudinal permittivity, piezoelectric coefficient d 36, and elastic constant c 66 E of K1 ? x (NH4) x H2PO4 mixed crystals are studied experimentally. A microscopic model is proposed for crystals of the K1 ? x (NH4) x H2PO4 type that includes the piezoelectric contribution to the effective pseudospin cluster Hamiltonian. Dielectric elastic and electromechanical properties of these crystals with ammonium concentrations x below 0.40 are calculated in a wide temperature range using the cluster approach. The calculation results are in qualitative agreement with experimental data.  相似文献   

15.
Single crystals of In2Se3 and CuIn5Se8 compounds and (In2Se3)1–x·(CuIn5Se8)x solid solutions have been grown from the melt using the Bridgman method and their composition and structure determined. It is shown that the crystals have n-type conductivity. Their transmission spectra were studied in the self-absorption edge region at 80 and 295 K. Based on the spectral measurements, the band gap width (Eg) was determined and the band gap concentration dependences were plotted. It is found that Eg varies with the x composition nonlinearly. Using the dielectric model of Van Vechten–Bergstresser and the Hill–Richardson pseudo potential model, Eg(x) was calculated theoretically.  相似文献   

16.
Four manganite samples of the series, (La1/3Sm2/3)2/3SrxBa0.33−xMnO3, with x=0.0, 0.1, 0.2 and 0.33, were investigated by X-band (∼9.5 GHz) electron paramagnetic resonance (EPR) in the temperature range 4-300 K. The temperature dependences of EPR lines and linewidths of the samples with x=0.0, 0.1 and 0.2, containing Ba2+ ions, exhibit similar behavior, all characterized by the transition temperatures (TC) to ferromagnetic states in the 110-150 K range. However, the sample with x=0.33 (containing no Ba2+ ions) is characterized by a much higher TC=205 K. This is due to significant structural changes effected by the substitution of Ba2+ ions by Sr2+ ions. There is an evidence of exchange narrowing of EPR lines near Tmin, where the linewidth exhibits the minimum. Further, a correlation between the temperature dependence of the EPR linewidth and conductivity is observed in all samples, ascribed to the influence of small-polaron hopping conductivity in the paramagnetic state. The peak-to-peak EPR linewidth was fitted to ΔBpp(T)=ΔBpp,min+A/Texp(−Ea/kBT), with Ea=0.09 eV for x=0.0, 0.1 and 0.2 and Ea=0.25 eV for x=0.33. From the published resistivity data, fitted here to σ(T)∝1/T exp(−Eσ/kBT), the value of Eσ, the activation energy, was found to be Eσ=0.18 eV for samples with x=0.0, 0.1 and 0.2 and Eσ=0.25 eV for the sample with x=0.33. The differences in the values of Ea and Eσ in the samples with x= 0.0, 0.1and 0.2 and x=0.33 has been ascribed to the differences in the flip-flop and spin-hopping rates. The presence of Griffiths phase for the samples with x=0.1 and 0.2 is indicated; it is characterized by coexistence of ferromagnetic nanostructures (ferrons) and paramagnetic phase, attributed to electronic phase separation.  相似文献   

17.
The temperature coefficient of the CdxHg1?xTe energy gap dEg/dT as a sum of lattice dilatation and the phonon-electron interaction terms has been calculated as the function of molar composition x, for 0?x?0.3, in the temperature range 4.2–300 K. A non-linear dependence of dEgdT vs x and a strong effect of temperature on dEgdT values have been obtained and a comparison with experimental data is discussed.  相似文献   

18.
A crystal of the Cs5H3(SO4)4 · xH2O (x ≈ 0.5) (PCHS) compound, which belongs to the family of proton conductors with a complex system of hydrogen bonds, is investigated by 2H NMR spectroscopy. The temperature and orientation dependences of the 2H NMR spectra are measured and analyzed. It is established that, upon transition to the glassy phase at the temperature T g = 260 K, the parameters characterizing the proton exchange between positions in hydrogen bonds remain unchanged to within the limits of experimental error. The protons in the two-dimensional network of hydrogen bonds in the (001) plane are dynamically disordered over possible positions down to temperatures considerably lower than the glass transition point T g . However, water molecules are fixed at particular structural positions in the phase transition range. In PCHS crystals with a nonstoichiometric water content, this circumstance can be responsible for the frustration that leads to the formation of the glassy state.  相似文献   

19.
Optical properties of Hg1 ? x ? y Cd x Eu y Se crystals grown by the Bridgman method have been investigated based on the independent reflectance and transmittance measurements, which were performed on a Nicolet 6700 spectrometer at T = 300 K in the wavelength range 0.9 ≤ λ ≤ 26.6 μm. The values of refractive index n, absorption index k, and absorption coefficient α have been determined for the crystals studied. Based on the dependences α = f(hν), the presence of direct allowed interband optical transitions in the crystals is established and the band-gap values are determined. The influence of temperature on the transmittance and band gap are investigated in the range T = 114–300 K.  相似文献   

20.
The effect of heat treatment on the optical and electrical properties of Ge15Sb10Se75 and Ge25Sb10Se65 thin films in the range of annealing temperature 373-723 K has been investigated. Analysis of the optical absorption data indicates that Tauc's relation for the allowed non-direct transition successfully describes the optical processes in these films. The optical band gap (Egopt.) as well as the activation energy for the electrical conduction (ΔE) increase with the increase of annealing temperature (Ta) up to the glass transition temperature (Tg). Then a remarkable decrease in both the Egopt. and ΔE values occurred with a further increase of the annealing temperature (Ta>Tg). The obtained results were explained in terms of the Mott and Davis model for amorphous materials and amorphous to crystalline structure transformations. Furthermore, the deduced value of Egopt. for the Ge25Sb10Se65 thin film is higher than that observed for the Ge15Sb10Se75 thin film. This behavior was discussed on the basis of the chemical ordered network model (CONM) and the average value for the overall mean bond energy 〈E〉 of the amorphous system GexSb10Se90−x with x=15 and 25 at%. The annealing process at Ta>Tg results in the formation of some crystalline phases GeSe, GeSe2 and Sb2Se3 as revealed in XRD patterns, which confirms our discussion of the obtained results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号