首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The optical absorption spectrum of Ni2+ ion doped in lecontite (sodium ammonium sulphate dihydrate) single crystal has been studied at room and liquid air temperatures. All the bands could be assigned assumingO h symmetry for the Ni2+ ion in the crystal. The splitting of3 T 1g (F) band at liquid air temperature has been attributed to spin-orbit interaction. The crystal field and spin-orbit parameters derived areD q=1000 cm?1;B=740 cm?1;C/B=4.27 and ζ=600 cm?1. All the bands observed show a blue shift when the crystal was cooled to liquid air temperature.  相似文献   

2.
EPR and optical absorption studies in azurite have been carried out at room and low temperatures. The EPR spectrum reveals that the ground state for Cu2+ ion is 2B1. Peak to peak linewidth of EPR spectrum is calculated (ΔHp = 76 G) and found to be close with the observed value. The Cu2+ ion situated in D4h symmetry with spin-orbit interaction exhibits bands at 11,806, 16,484, 17,952 and 19,793 cm?1. The tetragonal field parameters are calculated to be Ds = ? 3364 cm?1 and Dt = ? 604 cm?1. The crystal field splitting parameter is found to be Dq = ? 1175 cm?1.  相似文献   

3.
The absorption spectrum of Ni2+ doped in Cs2Mg(SO4)2 · 6H2O single crystals has been studied at room and liquid nitrogen temperatures in the range 7000–34000 cm?1. The observed spectrum is satisfactorily interpreted in terms of cubic ligand field model including spin-orbit coulping. The ligand field parameters evaluated to best fit the observed spectrum are B = 955 cm?1, C = 3572 cm?1, Dq = 910 cm?1 and ξ = 550 cm?1. The non-ligand field band observed at 77K has been interpreted to be the superposition of vabrational mode of SO42? radical on 3T1g(F) band.  相似文献   

4.
The absorption spectra of HoFeO3 were investigated in the near infrared spectral region at temperatures of 1.2, 4.2, 20 and 77 °K respectively. At every temperatureT≦20 °K all the absorption lines show the same splitting which is attributed to the groundstate; this splitting is (7.2±0.5) cm?1 at 20 °K and decreases to (4.9±0.8) cm?1 extrapolated to 0 °K. From these splittings the holmium-iron and the holmiumholmium interactions can be deduced. Measurements with an external magnetic field yield a magnetic moment ofμ=(7.6±0.7)μ B per holmium ion. The moments are directed at angles of ?28° and ?152° with respect to theb-axis.  相似文献   

5.
Single-crystal W-band (95 GHz) electron paramagnetic resonance (EPR) studies have been performed at 20 K and at room temperature on a tetragonal Mn(III) compound with potential application as a building block for high-spin clusters. The observed EPR spectra correspond to an anisotropic high-spinS = 2 ground state and have been attributed to equivalent centers related by four-fold symmetry. Accurate values for the spin Hamiltonian parameters were obtained from the analysis of the data at both temperatures. At 20 K the contribution of fourth-order zero-field splitting terms was shown to be significant, with parameter values B 4 0 = 0.0009(3) cm?1, B 4 2 = 0.0006(2) cm?1 and B 4 4 = 0.0017(3) cm?1, to be considered together with the second-order parametersD = ?1.1677(7) cm?1 andE= ?0.0135(6) cm?1.  相似文献   

6.
The emission and excitation spectra of the Bi2Ge3O9:Eu crystal are observed at 77 K and 297 K. The spectra contain groups of sharp lines which are attributed to the transitions within 4f6 (Eu3+) configuration. The numbers of Stark splitting of terminal levels of transitions from 5D0 and 7F0 multiplets indicate that Eu3+ substitutes for Bi3+ in Bi2Ge3O9. Tentative assignment of Stark levels of 7F0-4 multiplets is made to crystal quantum numbers of C3 symmetry which represents the site symmetry of Bi3+ in Bi2Ge3O9. The following set of values of crystal field parameters of the C3 point group is found to give the best overall agreement between the observed energy levels and the calculated levels: B20 = -533.84 cm-1, B40 = 1085.99 cm-1, Re(B43) = 327.57 cm-1, Im(B43) = 75.209 cm-1, B60 = 185.02 cm-1, Re(B63) = - 68.475 cm-1, Im(B63) = - 300.45 cm-1, Re(B66) = 137.24 cm-1 and Im(B66) = 882.29 cm-1.  相似文献   

7.
The energy levels for Ho3+ in single crystal LiYF4 from 0–21,300 cm?1 have been determined from polarized absorption and fluorescence spectra using crystals at temperatures between 4 and 300°K. Energy level assignments were made initially by comparing the crystal spectra with energy levels calculated by using crystal field parameters interpolated from previously reported analyses of Nd3+, Er3+ and Tm3+ in LiYF4. The energy level scheme identifies energy levels in the 10 lowest J-multiplets and gives calculated energies for the next six higher J-multiplets. The crystal field parameters were varied to obtain a best fit between experimental and theoretical energies, and the final values B20 = 410, B40 = ? 615, B44 = 819, B60 = ? 27.9 and B64 = 677 ± i32.8 cm?1 give an r.m.s. fit of 2.78 cm?1. The calculations were made by diagonalizing the crystal field Hamiltonian, Hx = ΣkmBkmCkm, in the space of ten lowest J-multiplets spanned by intermediate coupled free-ion wavefunctions calculated using the free-ion parameters of Carnall et al. for Ho in aqueous solution. The calculated g for the Γ3.4 ground state of 13.63 compares favorably with a previously reported value of 13.3 ± 0.1.  相似文献   

8.
Well-resolved photoluminescence spectra of CdIn2S4: Cr3+ recorded at 77K and 2K have been analysed. The R-lines from the doublet 2E-4A2 transition and their associated vibronic spectra have been assigned. These results yield a revised value for the crystal field parameter of B = 618 cm-1  相似文献   

9.
Optical absorption spectra of DyFeO3 have been investigated at 1.2≦T≦4.2 °K, andT=77 °K From the temperature dependent lineshift a Néel temperature ofT N=(3.8±0.5) °K is deduced for the dysprosium sublattices. The groundstate splitting due to the iron-dysprosium interactions is about 1.5 cm?1 and due to the dysprosiumdysprosium interactions (5.0±1.4) cm?1. Zeeman studies give the magnetic moment of the dysprosium ions asμ=(9.2±1.0)μ B.  相似文献   

10.
Optical absorption spectrum of Cr3+ ion doped in zinc cesium sulphate hexahydrate single crystal has been studied both at room and liquid nitrogen temperatures. From the nature and position of the bands a successful interpretation of all the bands could be made assuming octahedral symmetry for the Cr3+ ion in the crystal. The observed bands are assigned to the transitions from the ground 4A2g(F) state to the excited 2Eg(G), 2T1g(G), 4T2g(F) and 4T1g(F) states.The crystal field parameters Dq = 1735 cm?1, B = 635 cm?1 and C = 4.75 B are found to give a good fit to the observed band positions.  相似文献   

11.
X-band electron paramagnetic resonance (EPR) studies are carried out on Fe3+ ions doped in ammonium dihydrogen phosphate (ADP) single crystals at room temperature. The crystal field and spin Hamiltonian parameters are evaluated from the resonance lines obtained at different angular rotations. The obtained values of spin Hamiltonian and zero-field parameters of the Fe3+ ion in ADP are: g = 1.994 ± 0.002, |D| = (220 ± 5) × 10?4 cm?1 and a = (640 ± 5) × 10?4 cm?1. On the basis of EPR data, the site symmetry of the Fe3+ ion in the crystal is discussed. The Fe3+ ion enters the lattice substitutionally replacing the NH4 + sites. The optical absorption of the crystal is also studied at room temperature in the wavelength range of 195–925 nm. The energy values of different orbital levels are calculated. The observed bands are assigned as transitions from the 6 A 1g (S) ground state to various excited quartet levels of the Fe3+ ion in a cubic crystalline field. From the observed band positions, Racah interelectronic repulsion parameters (B and C), cubic crystal field splitting parameter (D q ) and Trees correction are calculated. There values are: B = 970, C = 1,923, D q  = 1,380 cm?1 and α = 90 cm?1, respectively. On the basis of EPR and optical data, the nature of bonding in the crystal is discussed. The zero-field splitting (ZFS) parameters are also determined theoretically using B kq parameters estimated from the superposition model. The values of ZFS parameters thus obtained are |D| = (213 ± 5) × 10?4 cm?1 and |E| = (21 ± 5) × 10?4 cm?1.  相似文献   

12.
The optical absorption and ESR spectra of Bi12GeO20 and B12SiO20 doped with Mn have been measured before and after illumination with visible light. Uniaxial stress measurements on a sharp line observed at 8026 cm?1 were performed. The observed ESR spectrum is a superposition of six lines resulting from the hyperfine interaction of manganese ions in tetrahedral positions. The g-factor and hyperfine constant are g = 1.999 ± 0.003 and A = 78 Gs. Analysis of the light-induced absorption spectrum leads to the conclusion that a small hole polaron bound to an Mn impurity at a tetrahedral site is responsible for the very broad absorption band which appears after illumination. The sharp line is interpreted as due to a transition inside the Mn+ center in tetrahedral coordination. Bands in the region 10,000–16,000 cm?1 are due to Mn3+ centers in interstitial positions, whose symmetry can be treated to a first approximation as tetragonal. The following crystal field parameters for this center were found: B = 565 cm?1, Dq = 1400 cm?1, Dt = ?330 cm?1, Ds = 4170 cm?1 and C = 2260 cm?1. The illumination conditions which are needed for homogeneous coloration of the sample are also discussed.  相似文献   

13.
The parallel band ν6(A2) of C3D6 near 2336 cm?1 has been studied with high resolution (Δν = 0.020 – 0.024 cm?1) in the infrared. The band has been analyzed using standard techniques and the following parameters have been determined: B″ = 0.461388(20) cm?1, DJ = 3.83(17) × 10?7 cm?1, ν0 = 2336.764(2) cm?1, αB = (B″ ? B′) = 8.823(12) × 10?4 cm?1, βJ = (DJ ? DJ) = 0, and αC = (C″ ? C′) = 4.5(5) × 10?4 cm?1.  相似文献   

14.
The spin-spin interaction of Dy3+ ions in a KY(WO4)2 single crystal is investigated by electron paramagnetic resonance (EPR) spectroscopy at a temperature of 4.2 K and a frequency of 9.2 GHz. The EPR spectra of ion pairs located in different coordination shells are analyzed. It is revealed that the considerable contribution to the spin-spin interaction of the nearest neighbor ion pair nn is made not only by the magnetic dipole-dipole interaction but also by the isotropic exchange interaction with the parameter I nn = (+601 ± 17) × 10?4cm?1. The exchange interaction in pairs of more widely spaced ions is substantially weaker: I 5n = (?38 ± 3) × 10?4cm?1 and I 9n = (+18 ± 4) × 10?4cm?1. For the other ion pairs, the magnetic dipole-dipole interaction dominates. It is found that the EPR spectra of single ions and ion pairs exhibit a superhyperfine structure associated with tungsten nuclei.  相似文献   

15.
The far-infrared rotational spectra of chlorotrifluoromethane, dichlorodifluoromethane, and trichlorofluoromethane have been observed with an interferometric (Fourier transform) spectrometer in the region 10–40 cm?1 at a resolution of 0.07 cm?1. CCl2F2 exhibits a continuum spectrum at this resolution, but symmetric top rotational fine structure is observed for CClF3 and CCl3F. Isotope splitting is also observed in CClF3, and analysis yields the rotational constants for C35ClF3 of B0 = 0.11112 cm?1, DJ = 1.6 × 10?8cm?1; and for C37ClF3, B0 = 0.10835 cm?1, DJ = 1.5 · 10?8cm?1. Isotopic shifts can be allowed for in CCl3F to yield constants for C35Cl3F of B0 = 0.0821 cm?1, DJ = 1 × 10?8cm?1. These values are all in agreement with those deduced from microwave studies of the low J transitions apart from B0 for C35ClF3, where the difference is outside the expected experimental error.  相似文献   

16.
Rotational analysis of the (0,0) band of the B2Σ-X2Σ transition of ScS is reported. Spectrographic illustration of a hyperfine coupling transition in the ground state is demonstrated for the first time. This enables an order of magnitude to be obtained for γ″ (~0.003 cm?1). The results for the other constants were: X state: B″ = 0.1971 cm?1, D″ = 5 × 10?8cm?1, 4b = 0.23 cm?1 (equal to that for ScO within the limits of measurement uncertainty); B state: B′ = 0.1853 cm?1, D′ = 6 × 10?8cm?1, γ′ = ?0.0594 cm?1, which can be compared with pA2Π = 0.060 cm?1. It was found that the two excited states A2Π and B2Σ constitute an excellent example of pure precession (ppp = 0.058 cm?1, and this enables the vibrational levels of A2Π to be numbered.  相似文献   

17.
《Solid State Communications》1987,64(7):1085-1088
Optical absorption spectrum of Ni2+ ion in Falcondoite, a new mineral has been studied at 300 K. From the nature and positions of the observed bands a succesful interpretation of all the bands could be made assuming octahedral symmetry for the Ni2+ ion in the crystal. The bands at 9255, 15 380 and 27 390cm−1 are assigned to 3T2g(F), 3T1g and 3T1g(P) and the other band at 24385 cm−1 assigned to 1T2g(D). The crystal field and the Racah parameters are evaluated to be Dq = 925 cm−1, B = 1000 cm−1 and C = 4095 cm−1. NIR and IR spectra of the sample are also studied. The fundamental vibrational modes of H2O are identified in the IR spectrum. The bands observed in the NIR spectrum are due to overtones and combination tones of water molecule.  相似文献   

18.
Electron paramagnetic resonance measurements in single crystals of NiSiF6. 6D2O were made at K, Ku and Ka bands at 4.2 K and between 77 K and 300 K. The measured g values were in the range 2.23–2.26, while the zero-field splitting parameter D varied from ?(0.185 ± 0.005) cm?1 at 4.2 K to ?(0.53 ± 0.01) cm?1 at 298 K. The parameters of the trimolecular hexagonal unit cell were determined to be approximately a = 9.28 Å, c = 9.58 Å from powder X-ray diffraction measurements at room temperature.  相似文献   

19.
Hall effect and electrical conductivity have been investigated between 77 K and 300 K and the magnetoresistance at 4.2 K for a number of (SN)x films deposited at substrate temperatures between — 10 and 50°C. The small magnitude of the Hall mobility (? 1 cm2 Vsec?1 at 300 K) and its activated temperature dependence are interpreted in terms of a heterogenous model for (SN)x films with thin depletion layers separating highly conductive islands. The hole concentration in these islands (p ≈ 1021 cm?3, the microscopic mobility (μ ≈ 500 cm2 Vsec?1 at 4.2 K) and the temperatures dependence of μ are found to be close to values for (SN)x crystals.  相似文献   

20.
The absorption spectrum of single crystals of ErFeO3 has been investigated in the red and near infrared spectral region in the temperature range between 1.2 °K and 4.2 °K and at 20 °K and 77 °K. Between 77 °K and 4.2 °K a constant splitting of the absorption lines is observed. Below the Néel-temperature of the erbium sublattice at 4.5 °K the splitting of the absorption lines increases; the saturation value extrapolated to 0 °K of the splitting of the lowest crystal field level of the4 I 15/2 groundterm is (6.08±0.30) cm?1. By measuring the Zeeman effect the groundstate magnetic moment is determined asμ=(6.6±0.2)μ B. The measured temperature dependence of the splitting of the lowest crystalfield level of the4I15/2 groundterm is compared with that calculated by a Monte Carlo method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号