首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study the magnetic properties of Mn0.95Cr0.05As, prepared by mechanical milling, have been investigated. The results suggest that the presence of strains is very important for the magnetic state of the compound. In the presently studied compound, a combined magnetic and structural transition occurs from paramagnetic MnP phase to ferromagnetic NiAs phase at about 234 K. With further decreasing temperature, at 159 K, a transition from ferromagnetic NiAs phase to helimagnetic (Ha-type) MnP phase is observed, which is accompanied by an inverse magnetocaloric effect. The ferromagnetic phase is recovered when the temperature is increased. At both first-order transitions, at 159 and 234 K, large magnetic-entropy changes are observed.  相似文献   

2.
本文报道非晶态Fe13Ni67.2P4.5B15.3合金的磁化强度与温度和磁场关系的测量结果。在居里温度附近样品的磁特性符合二级相变规律,得到临界指数β=0.39±0.02,γ=1.56±0.06,δ=5.20±0.1,样品的居里温度Tc=(180.4±0.2)K。在实验误差范围内,临界指数β,γ,δ满足γ=β(δ-1)关系,在168—192K温度范围,实验数据满足二级相变的磁状态方程。当T>270K时,样品顺磁磁化率服从居里-外斯定律,由居里-外斯常数c计算出有效顺磁磁矩Peff=3.19 μB关键词:  相似文献   

3.
Magnetic field (0–4 T) and temperature dependencies (4.2–320 K) of the electrical resistance of Gd5(Si1.5Ge2.5), which undergoes a reversible first-order ferromagnetic↔paramagnetic phase transition, have been measured. The electrical resistance of Gd5(Si1.5Ge2.5) indicates that the magnetic phase transition can be induced by both temperature and magnetic field. The temperature dependence of the electrical resistance, R(T), for heating at low temperatures in the zero magnetic field has the usual metallic character, but at a critical temperature of Tcr=216 K the resistance shows a 20% negative discontinuity due to the transition from the low-temperature high-resistance state to the high-temperature low-resistance state. The R(T) dependence for cooling shows a similar but positive 25% discontinuity at 198 K. The isothermal magnetic field dependence of the electrical resistance from 212T224 K indicates the presence of temperature-dependent critical magnetic fields which can reversibly transform the paramagnetic phase into the ferromagnetic phase and vice versa. The critical magnetic fields diagram determined from the isothermal magnetic field dependencies of the electrical resistance of Gd5(Si1.5Ge2.5) shows that the FM↔PM transition in zero magnetic field on cooling and heating occurs at 206 and 213 K, respectively. The full isothermal magnetic filed hysteresis for the FM↔PM transition is 2 T, and the isofield temperature gap between critical magnetic fields is 7 K.  相似文献   

4.
The phase relation of LaFe11.5Si1.5 alloys annealed at different high-temperature from 1223 K (5 h) to 1673 K (0.5 h) has been studied. The powder X-ray diffraction (XRD) patterns show that large amount of 1:13 phase begins to form in the matrix alloy consisting of α-Fe and LaFeSi phases when the annealing temperature is 1423 K. In the temperature range from 1423  to 1523 K, α-Fe and LaFeSi phases rapidly decrease to form 1:13 phase, and LaFeSi phase is rarely observed in the XRD pattern of LaFe11.5Si1.5 alloy annealed at 1523 K. With annealing temperature increasing from 1573  to 1673 K, the LaFeSi phase is detected again in the LaFe11.5Si1.5 alloy, and there is La5Si3 phase when the annealing temperature reaches 1673 K. There almost is no change in the XRD patterns of LaFe11.5Si1.5 alloys annealed at 1523 K for 3-5 h. According to this result, the La0.8Ce0.2Fe11.5−xCoxSi1.5 (0≤×≤0.7) alloys are annealed at 1523 K (3 h). The analysis of XRD patterns shows that La0.8Ce0.2Fe11.5xCoxSi1.5 alloys consist of the NaZn13-type main phase and α-Fe impurity phase. With the increase of Co content from x=0 to 0.7, the Curie temperature TC increases from 180 to 266 K. Because the increase of Co content can weaken the itinerant electron metamagnetic transition, the order of the magnetic transition at TC changes from first to second-order between x=0.3 and 0.5. Although the magnetic entropy change decreases from 34.9 to 6.8 J/kg K with increasing Co concentration at a low magnetic field of 0-2 T, the thermal and magnetic hysteresis loss reduces remarkably, which is very important for the magnetic refrigerant near room temperature.  相似文献   

5.
The magnetic properties and the magnetic entropy change AS have been investigated for Gd6Co1.67Si3 compounds with a second-order phase transition. The saturation moment at 5 K and the Curie temperature TC are 38.1μB and 298 K, respectively. The AS originates from a reversible second-order magnetic transition around TC and its value reaches 5.2 J/kg.K for a magnetic field change from 0 to 5T. The refrigerant capacity (RC) of Gd6Co1.67Si3 are calculated by using the methods given in Refs.[12] and [21], respectively, for a field change of 0 5T and its values are 310 and 440 J/kg, which is larger than those of some magnetocaloric materials with a first-order phase transition.  相似文献   

6.
In order to study the mechanism behind the phase separation scenario in the Sm0.15Ca0.85MnO3 compound, magnetization and resistivity measurements have been carried out in pulsed magnetic fields up to 50 T at temperatures 4.2 K<T<200 K. It is found that external magnetic field causes a collapse of a C-type AFM (P21/m) phase resulting in field-induced insulator-metal transition, which is irreversible below T1=75 K. In zero field the content of a G-type phase in the mixed C-G state can vary from 10 to 17% at T=10 K. A set of metastable states with different volume ratios of G-type to C-type phases is observed below T1 depending on the history of the sample. The obtained results indicate that the phase separation plays a dominant role for the electric and the magnetic properties of this material.  相似文献   

7.
The exchange bias phenomenon has been investigated in multiferroic Eu0.75Y0.25MnO3. The material shows a weak ferromagnetism with cone spin configuration induced by external magnetic field below 30 K. Consequently, the electric polarization coming from the cycloid spin order below 30 K can be suppressed by external magnetic fields. The magnetic hysteresis loops after cooling in a magnetic field exhibit characteristics of exchange bias below the spin glassy freezing temperature (Tg)∼16 K. The exchange bias field, coercivity field, and remanent magnetization increase with increasing cooling magnetic field. The exchange bias effect is ascribed to the frozen uncompensated spins at the antiferromagnetism/weak ferromagnetism interfaces in the spin-glass like phase.  相似文献   

8.
The effect of doping of rare earth Pr3+ ion as a replacement of Sm3+ in Sm0.5Sr0.5MnO3 is investigated. Temperature dependent dc and ac magnetic susceptibility, resistivity, magnetoresistance measurements on chemically synthesized (Sm0.5−xPrx)Sr0.5MnO3 show various unusual features with doping level x=0.15. The frequency independent ferromagnetic to paramagnetic transition at higher temperature (∼191 K) followed by a frequency dependent reentrant magnetic transition at lower temperature (∼31 K) has been observed. The nature of this frequency dependent reentrant magnetic transition is described by a critical slowing down model of spin glasses. From non-linear ac susceptibility measurements it has been confirmed that the finite size ferromagnetic clusters are formed as a consequence of intrinsic phase separation, and undergo spin glass-like freezing below a certain temperature. There is an unusual observation of a 2nd harmonic peak in the non-linear ac susceptibility around this reentrant magnetic transition at low temperature (∼31 K). Arrott plots at 10 and 30 K confirm the existence of glassy ferromagnetism below this low temperature reentrant transition. Electronic- and magneto-transport measurements show a strong magnetic field—temperature history dependence and strong irreversibility with respect to the sweeping of magnetic field. These results are attributed to the effect of phase separation and kinetic arrest of the electronic phase in this phase separated manganite at low temperatures.  相似文献   

9.
We have studied by the electron-spin resonance (ESR) and static magnetic field techniques, the La2/3Ba1/3MnO3 perovskite, which was previously shown to exhibit a martensitic phase transformation in the vicinity of Ts∼200 K [Physical Review B 68, 054109 (2003)], leading to its structural phase-segregated state. Resonant absorptions reveal that in the temperature interval from 100 K to 340 K the compound represents a mixture of two ferromagnetic phases possessing different magnetizations, in varying proportions depending on the temperature, and a small amount of a paramagnetic phase. The results agree well with the previous neutron diffraction study. Applied in the ESR experiments, magnetic fields (2–6 kOe) strongly affect the magnetization curves: even magnetic field as high as 700 Oe modifies the anomaly in the phase transformation region and removes the difference between the zero-field cooled and field-cooled magnetization curves, which implies that the difference in the magnetic susceptibility of the coexisting phases is small and the magnetic domain configuration can be easily changed.  相似文献   

10.
Magnetic phase transitions in rare earth intermetallic compound Nd7Rh3 have been investigated using a single crystal. Measurement results of magnetization, magnetic susceptibility, specific heat, and electrical resistivity reveal that Nd7Rh3 has two magnetic phase transitions at TN=34 K, Tt2=9.1 K and a change of the magnetic feature at Tt1=6.8 K in the absence of an external magnetic field. Antiferromagnetic orderings exist in all the three magnetic states; a large magnetic anisotropy between the c-axis and the c-plane is observed. In the magnetic phase below Tt2, an irreversible field-induced magnetic phase transition takes place in the c-plane; after removing external magnetic field, a coexistence state of ferro- and antiferromagnetic ordering or a ferrimagnetic state having a remanent magnetization MR is stabilized. The MR decays to a certain value for several hours after the first process; a magnetic field cooling effect was also observed in the c-plane below Tt2. In the antiferromagentic state above Tt2, the irreversibility disappears and an ordinary antiferromagnetic state takes place. As the origin of this phenomenon, a kind of martensitic structural transition that is observed in Gd5Ge4 can be considered.  相似文献   

11.
Co3V 2O8 is a spin- 3/2 system on a Kagomé staircase and is known to undergo two magnetic phase transitions between 6 and 11 K. The H-T phase diagram of Co3V 2O8 derived by magnetization measurements on a single crystal is presented. Additionally both ordered magnetic structures were investigated by neutron powder diffraction experiments and solved using Bertaut’s macroscopic theory. For the ferromagnetic phase the magnetic moments of the Co2+ ions were found to be 1.5(3)μB and 2.7(1)μB at 3.5 K along the crystallographic a axis for the (4a) and (8e) sites, respectively. The antiferromagnetic phase exhibits a magnetic cell with a doubled b axis with respect to the nuclear one. The magnetic moments point along the a axis being 1.8(2)μB (4a) and 1.8(1)μB (8e) at 8 K.  相似文献   

12.
郭光华 《物理学报》2001,50(2):313-318
在10—800K的温度范围内用X射线衍射方法测量了DyMn2Ge2化合物的晶格常数与温度的变化关系,观察到高温时DyMn2Ge2由顺磁状态到反铁磁状态的自发磁相变伴随着晶格常数a的负的磁弹性异常现象.在4.2K—200K的温度范围内测量了DyMn2Ge2的交流磁化率.在交换相互作用的分子场模型近似下,从理论上分析讨论了DyMn2Ge2的低温自发磁相变和场诱导的磁相变.计算了DyMn2Ge2单晶的磁化强度与温度的变化关系以及不同温度下外磁场沿晶轴c方向时的磁化曲线.理论分析和计算结果表明,温度低于33K时在DyMn2Ge2中观察到的场诱导的一级磁相变为由亚铁磁状态(Fi)到中间态(IS)相变. 关键词: 稀土-过渡族金属间化合物 磁结构 磁相变  相似文献   

13.
Magnetic properties and magnetic entropy change ΔS were investigated in Heusler alloy Ni43Mn43Co3Sn11. With decreasing temperature this alloy undergoes a martensitic structural transition at TM=188 K. The incorporation of Co atoms enhances ferromagnetic exchange for parent phases. Austenitic phase with cubic structure shows strong ferromagnetic behaviors with Curie temperature TCA at 346 K, while martensitic phase shows weak ferromagnetic properties. An external magnetic field can shift TM to a lower temperature at a rate of 4.4 K/T, and a field-induced structural transition from martensitic to austenitic state takes place at temperatures near but below TM. As a result, a great magnetic entropy change with positive sign appears. The size of ΔS reaches 33 J/kg K under 5 T magnetic field. More important is that the ΔS displays a table-like peak under 5 T, which is favorable for Ericsson-type refrigerators.  相似文献   

14.
In this work neutron diffraction studies of Tb2Rh3Si5 compound are reported. The compound crystallizes in the monoclinic crystal structure of Lu2Co3Si5-type. At 1.5 K an antiferromagnetic ordering with a propagation vector k=(1/2;1/2;1/2) was observed. The Tb magnetic moments of 9.8(2) μB form a non-collinear magnetic structure. In the vicinity of Néel temperature of 8 K a change of the magnetic ordering is evidenced. The change seems to be connected with phase transition from commensurate to incommensurate sine-wave modulation of the Tb magnetic moments.  相似文献   

15.
Microstructure by X-ray diffraction and Mössbauer spectroscopy, and isothermal magnetic entropy changes in the bulk amorphous Fe60Co5Zr8Mo5W2B20 alloy in the as-quenched state and after annealing at 720 K for 15 min are studied. The as-cast and heat treated alloy is paramagnetic at room temperature. The quadrupole splitting distribution is unimodal after annealing indicating the more homogenous structure in comparison with that for the as-cast alloy. Curie temperature slightly increases after annealing from 265±2 K in the as-quenched state to 272±2 K and the alloy exhibits the second order magnetic phase transition. The maximum of isothermal magnetic entropy changes appears at the Curie points and is equal to 0.30 and 0.42 J/(kg·K) for the alloy in the as-quenched state and after annealing, respectively. In the paramagnetic region the material behaves as a Curie-Weiss paramagnet.  相似文献   

16.
对定向凝固方法制备的Ni47Mn32Ga21多晶合金,通过扫描电镜、金相、电子能谱等手段研究其组份和组织形貌,通过对合金磁化强度与温度关系、等温磁化曲线及磁感生应变曲线等的测量分析,研究了合金结构相变和磁相变过程中的磁熵变及不同压力下的磁感生应变. 研究结果表明:合金组份与设计组份基本一致,室温下合金大部分为马氏体相. 升温过程中合金的磁熵变在居里温度(365 K)附近有最大值,并有较大的磁熵变峰值半高宽,747 kA/m的磁场下该磁熵变最大值为-1.45 J/kg ·K,磁熵变峰值的半高宽为21 K. 合金在室温(298 K)下有较好的双向可恢复磁感生应变,480 kA/m磁场下,无压力时合金的磁感生应变值达到-670×10-6,并趋饱和;而在与磁场方向平行的27.3 MPa外压力作用下合金的磁感生应变值增大到-1300×10-6,且未饱和. 关键词: Ni-Mn-Ga 铁磁形状记忆合金 磁熵变 磁感生应变  相似文献   

17.
We report the growth of single phase, c-axis aligned thin films of La1.2Ca1.8Mn2O7 on SrTiO3 (001) substrates using a controlled pulsed laser deposition method. In this method, constraint of epitaxy is utilized to stabilize the Ruddlesdon-Popper (RP) phase of La1.2Ca1.8Mn2O7. Oxygen ambient pressure and the rate of deposition play a very important role in influencing the epitaxial growth as well as maintaining phase purity of the material. The oxygen pressure inside the deposition chamber was very precisely controlled and varied during the layer-by-layer growth of the film. Films, prepared by our method, show excellent electrical and magnetic characteristics with a sharp metal-insulator transition at TM-I=90 K, closely followed by a magnetic transition at TC=91 K.  相似文献   

18.
We have investigated the magnetic and transport properties of a new ternary intermetallic compound Pr2Pd3Si5 which forms in U2Co3Si5-type orthorhombic structure (space group Ibam). At low field (0.01 T) magnetic susceptibility exhibits an abrupt increase below 7 K and peaks at 5 K, revealing a magnetic phase transition. The onset of magnetic order is also confirmed by well defined anomalies in the specific heat and electrical resistivity data. Apart from the sharp λ-type anomaly, magnetic part of specific heat also shows a broad Schottky-type hump due to crystal field effect. Magnetoresistance data as a function of temperature exhibits a pronounced peak in paramagnetic state which could be interpreted in terms of crystal field effect and short-range ferromagnetic correlations.  相似文献   

19.
The magnetic phase diagrams of Mn(Nb0.5Ta0.5)2O6 have been determined by means of neutron diffraction. Two spin-flop-transitions GxAzAxGzGy have been detected in a magnetic field parallel to the x-direction. The first phase boundary increases as the temperature rises up to a triple point at 4.74 K and 20.5 kOe, whereas the second phase boundary decreases until another triple point at 4.55 K and 35.5 kOe is reached. In fields parallel to the z-direction a transition GxAzGxGz has been revealed, the phase boundary meets the paramagnetic one in a triple point at 4.65 K and 55 kOe.  相似文献   

20.
In this work the Mn5Si3 and Mn5SiB2 phases were produced via arc melting and heat treatment at 1000 °C for 50 h under argon. A detailed microstructure characterization indicated the formation of single-phase Mn5Si3 and near single-phase Mn5SiB2 microstructures. The magnetic behavior of the Mn5Si3 phase was investigated and the results are in agreement with previous data from the literature, which indicates the existence of two anti-ferromagnetic structures for temperatures below 98 K. The Mn5SiB2 phase shows a ferromagnetic behavior presenting a saturation magnetization Ms of about 5.35×105 A/m (0.67 T) at room temperature and an estimated Curie temperature between 470 and 490 K. In addition, AC susceptibility data indicates no evidence of any other magnetic ordering in 4-300 K temperature range. The magnetization values are smaller than that calculated using the magnetic moment from previous literature NMR results. This result suggests a probable ferrimagnetic arrangement of the Mn moments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号