首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
For the giant 4d photoabsorption of La, both the total photoabsorption spectrum and the N4.5-derived Auger emission intensity spectrum increase significantly above hν ? 112 eV, with spectral peaks at hν = 118 and 119 eV, respectively. However, the predominant 4d photoemission partial cross section shows a delayed onset of ~ 4 eV, with a peak at hν = 121 eV, while the 5s, 5p, and 5d partial cross sections all show a strong resonant enhancement at lower energies, with spectral peaks at hν = 116.6 eV. These results are compared with a recent many-body calculation for Ce. The photon energy dependence of the La 4d52/4d32 photo-emission branching ratio is consistent with a “final-state model.”  相似文献   

2.
The total density of occupied states in the valence band of CoO and Co3O4 is determined by XPS and UPS. From variations of excitation probability of the bands, the 4 e V wide O2p band is shown to be located around 5 eV for both oxides, while structures obtained from photoionisation of the localized 3d band spread over 10 eV range below the Fermi level overlapping with O2p band. The 3d peaks located at binding energy <3 eV correspond to the calculated energy of the dn ?1 manifold final state in the octahedral and tetrahedral crystal field of CoO and Co3O4. The 3d levels at higher binding energy are shown to occur from configuration interaction in both final and initial states. These last peaks are higher in intensity for CoO relative to Co3O4. A superior limit for the width of the 3d initial band in a one electron energy diagram is given to be <3 eV. This value associated to the Coulomb correlation energy measured equal to ~3 eV. This value associated to the Coulomb correlation energy measured equal to ~3 eV from shake-up and Auger energy confirms the Mott insulator nature of CoO.  相似文献   

3.
Electron energy loss spectra of a Pd(110) clean surface have been measured at primary energies of 40–100 eV. The observed peaks are at the loss energies of ∼ 3, 4.3, 7.5, 11.5, 16, 21.3, 26.5 and 33.8 eV. The 7.5, 26.5, and 33.8 eV peaks are attributed mainly to the bulk plasmon excitations associated with 5s electrons, coupled 5s and a limited number of 4d electrons, and total (4d+5s) electrons, respectively. The rest of the peaks are ascribed mainly to one-electron excitations.  相似文献   

4.
We report a photoelectron spectroscopic study of the valence bands of epitaxial Ce(1 1 1) films grown on W(1 1 0) at room temperature. The evolution of γ → α → γ like phase transition of Ce is observed with increasing Ce coverage and the valence-band structures of γ-like Ce film are determined. The 4f and 5d photoemission cross sections in the photon energy region from 20 eV to 130 eV are presented and discussed. A 5d-like surface state and a 6s band bottom are identified.  相似文献   

5.
The interaction of D2 O with a polycrystalline cerium surface, successfully cleaned by heavy Ar+ bombardment and annealing, was studied at 120 were observed at BE 530.3 (Ce2O3) and 532.7eV (adsorbed OD). When clean Ce at 120 K was exposed to D2 O, the O(1s) spectra were initial eV (adsorbed D2 O). For exposures greater than 10 Langmuir (L), a multilayer of ice grows and the O(1s) spectra become dominated by a peak at 5The results of interaction with D2 O are compared with oxidation by O2. The significant differences are: (1) the absence of Ce(IV) when oxidati relatively small extent of oxidation that occurs when Ce is exposed to D2 O at 120 K, and (3) the larger chemical-shift of the Ce(III)-derived specThe XPS studies of the interaction of D2 O with Ce reported here may be summarized as follows:(1) Exposure at 300 K gives rise to O(1s) features characteristic of oxide and hydroxide, while the Ce(3d) spectra indicate Ce(III), but no CE((2) Exposure at 120 K gives O(1s) features characteristic of adsorbed OD, chemisorbed D2 O, a multilayer of ice, and a small amount of oxide. T are characteristic of clean Ce except for slight broadening.(3) Exposure at 120 K followed by warming to 240 and 300 K gives spectra characteristic of hydroxide and oxide surface-species. Between 240 and 300 K, O(1s) intensity.(4) At 300 K, a relatively thick layer of oxide forms, and after an exposure of 50 L the features characteristic of metallic Ce are no longer observabl(5) As compared to the case for O2, exposure to D2 O gives rise to different satellite-splittings in the Ce(3d) spectra, suggesting that di formed in the two cases.(6) The spectra observed for Ce exposed to D2 O are in excellent accord with those found for the heavier lanthanides [4].  相似文献   

6.
We investigated the electronic states of a single-crystal SrFeO2 epitaxial thin film in the valence-band and conduction-band regions using synchrotron-radiation X-ray photoemission and absorption spectroscopies. Fe 2p–3d resonant photoemission measurements revealed that the Fe 3d states have higher densities of states at binding energies of 3–5 eV and 5–8.5 eV in the valence-band region. The O K-edge X-ray absorption spectrum exhibited three peaks in the Fe 3d-derived conduction band hybridized with O 2p states; these can be assigned to Fe 3dxy, 3dxz + 3dyz, and 3dx2y2. In addition, the indirect bandgap value of the SrFeO2 film was determined to be 1.3 eV by transmission and absorption spectroscopies.  相似文献   

7.
Fluorescent characteristics of a series of powder CaF2: Mn phosphors (from 0.01 to 2.47 wt. % of Mn in the mixture) excited by VUV radiation with quantum energies up to 14 eV at 293 K and up to 12 eV at 85 K are measured. Narrow excitation bands of Mn2+ centers found at 7.9 and 8.6 eV (at 293 K) are assigned to partially forbidden transitions of electrons from the ground state 6 S split by the crystalline field (10 Dq=0.71 eV from the literature) in two sublevels to the excited level corresponding to the 6 D term of a free Mn2+ ion (3d 5 → 3d 44s transitions). A wide nonelementary excitation band in the region of 9.1–10.3 eV is interpreted as photogeneration of near-activator D-excitations: allowed transitions of electrons from levels that are split from the top of the valence band under the influence of an impurity ion to the free 4s-orbital of a Mn2+ ion. Channels of energy transport in the CaF2: Mn system are briefly analyzed.  相似文献   

8.
The chemical composition, electronic structure, structure, and physical properties a lutetium oxide Lu2O3 film are studied by X-ray photoelectron spectroscopy, ellipsometry, and X-ray absorption spectroscopy. The short-range order in Lu2O3 is found to correspond to its cubic modification. The binding energies of the 1s and 2p levels of oxygen and the 4d 5/2 and 4f 7/2 levels of lutetium are 529.2, 5.0 and 7.4, 195.9 eV, respectively. The energy gap determined from the electron energy loss spectrum of the film is 5.9 eV. The electron energy loss spectra have two peaks at 17.4 and 22.0 eV, which can be attributed to the excitation of bulk plasma oscillations. The dispersion of the refractive index is measured by spectral ellipsometry. The refractive index is shown to increase from 1.82 at 1.5 eV to 2.18 at 5.0 eV, and the high-frequency permittivity of Lu2O3 is 3.31.  相似文献   

9.
We study both theoretically and experimentally the photon-in and photon-out spectra of CeO2, which are caused by the Ce 2p to Ce 5d excitation followed by the three different de-excitation channels: (i) Ce 3d to Ce 2p (denoted by 3d-RXES), (ii) O 2p to Ce 2p (v-RXES), and (iii) Ce 5d to Ce 2p (RIXS). In 3d- and v-RXES, the 5d electron plays a role of a spectator, but in RIXS it is a participator. By extending our single impurity Anderson model (SIAM), which was used recently for our calculations of v- and 3d-RXES spectra of CeO2, we study the polarization dependence in the spectator and participator spectra, and we perform more detailed calculations for 3d- and v-RXES spectral features, as well as new calculations for the RIXS spectrum with charge transfer excitations. The polarization dependence is different for the spectator and participator spectra; we have no polarization correlation between the incident and emitted photons for the spectator spectra but a strong polarization correlation for the participator spectrum. The theoretical calculations predict that the charge transfer excitations in RIXS occur in the transfer-energy range overlapped with v-RXES, but the RIXS and v-RXES spectra can be discriminated by taking advantage of the different polarization dependence. The overlapped RIXS and v-RXES spectra are observed successfully by our experiments and well reproduced by our SIAM calculations.  相似文献   

10.
Appearance-potential Spectroscopy (APS) probes the binding energy of core levels and local conduction band states of atoms in the surface region. Soft X-ray APS (SXAPS) and Auger electron APS (AEAPS), respectively, measure the differential X-ray fluorescence and secondary electron yields as a function of incident electron energy. We have obtained the N4,5-level SXAPS and AEAPS spectra of La, Ce, Pr, Nd and Sm metals. Both spectra exhibit multiplet structure below the expected 4d excitation threshold and a broad, 10–20 eV wide peak above the threshold followed by small peaks of decreasing intensity. The data are used to gain an understanding of the decay mechanism following the excitation of the core levels in these spectroscopies. The strong similarity observed between the SXAPS and AEAPS indicates that the characteristic emission and not the bremsstrahlung dominates the spectral lineshape in APS.  相似文献   

11.
Numerical calculations of the thermopower component S d that is associated with the fine structure of the density of d states near the Fermi level are carried out for CeNi5 and its La analog. The estimates, together with earlier experimental data on the transport coefficients in Ce(M xNi1?x )5 solid solutions with M=Ga, Cu (0≤x≤0.4)), are used to analyze the behavior of the thermopower component S f originating from the Ce valence instability. It is shown that as Ce crosses over from the state of its usual intermediate valence to the saturated-valence state, the feature near the Fermi energy, which represents a Lorentzian-shaped peak of the density of f states, transforms to a double-humped structure. The possibility of formation of a strongly correlated band of f states in Ce(M xNi1?x )5 in the crossover to the Ce saturated-valence state, accompanied by the opening of a quasi-gap Δ ~ 400 K, is discussed.  相似文献   

12.
Isochromate spectra of polycrystalline Ce, CeH2.1 and CeH2.9 were measured at a photon energy of 9.7 eV. The intensity at EF is 4 to 5 times lower on CeH2.1 than it is on the metal, and it vanishes on CeH2.9. This is in accordance with XPS, UPS and conductivity data. In both hydrides broad features ( ~2 eV FWHM) appear, centered between 4 and 5 eV. From cross section arguments and from comparison with a CeRu2 spectrum taken at the same photon energy, we conclude that we do not see any 4f contribution in our spectra. A signal at 7 eV on the CeH2.9 spectrum is assigned to the 2Σ+u shape resonance of the H2? ion, formed by desorbed H2 molecules.  相似文献   

13.
The electron distribution in the valence band from single crystals of titanium carbide has been studied by photoelectron spectroscopy with photon energies h?ω = 16.8, 21.2, 40.8 and 1486.6 eV. The most conspicious feature of the electron distribution curves for TiC is a hybridization between the titanium 3d and carbon 2p states at ca. 3–4-eV binding energy, and a single carbon 2s band at ca. 10 eV. By taking into account the strong symmetry and energy dependence of the photoionization crosssections, as well as the surface sensitivity, we have identified strong emission from a carbon 2p band at ? 2.9-eV energy. Our results are compared with several recent energy band structure calculations and other experimental data. Results from pure titanium, which have been used for reference purposes, are also presented.The valence band from single crystals of titanium carbide have been studied by means of photoelectron spectroscopy, with photon energies ranging from 16.8 to 1486.6 eV.By taking into account effects such as the symmetry and energy dependence of the photoionization cross-sections and surface sensitivity, we have found the valence band of titanium carbide to consist of two peaks. The upper part of the valence band at 3–4 eV below the Fermi level consists of a hybridization between Ti 3d and C 2p states. The C 2p states observed in our spectra were mainly excited from a band about 2.9 eV below the Fermi level. The APW5–9, MAPW10 and EPM11 band structure calculations predict a flat band of p-character between the symmetry points X4 and K3, most likely responsible for the majority of C 2p excitations observed. The C 2s states, on the other hand, form a single band centered around ?10.4 eV.The results obtained are consistent with several recent energy band structure calculations5–11, 13 that predict a combined bonding of covalent, ionic and metallic nature.  相似文献   

14.
The soft X-ray emission and photoelectron emission spectra of H2-, Mg- and Pt- phthalocyanine (PC) obtained using synchrotron radiation are reported and compared. In this way, an overall view of the pattern of valence bands is obtained and the electronic structure determined in terms of the component partial densities of states. In particular, from the valence p → 1s carbon and nitrogen K-emission spectra we determine for all three compounds the C and N 2p-like valence-band density of states with strong maxima located at binding energies of 8, 11 and 13.5 eV (carbon 2p) and 8 eV (nitrogen 2p) below the vacuum level. For PtPC the partial density of d-like valence states is determined from photoelectron emission difference-spectra and compared to previous XPS results. The sharp (1.2 eV FWHM) maximum of the Pt-derived partial density of states, observed at 6.9 eV binding energy, is assigned to the 4F term of a 5d86s final-state configuration. A second, broader maximum at around 9.5 eV binding energy contains contributions from other terms of this 5d8 configuration, as well as from a 5d7 satellite (shake-up multiplet).  相似文献   

15.
He II-ultraviolet photoelectron spectra (hv = 40.8 eV) from a carbon monoxide layer adsorbed on a Cu(111) surface exhibit two peaks at 8.5 and 11.6 eV below the Fermi level and a weaker maximum centered at about 13.5 eV. The emission from the Cu d-band is markedly suppressed after adsorption. The results are discussed in terms of the recent models for assigning the UPS peaks observed after adsorption of CO on transtion metals  相似文献   

16.
Gallium antimonide (GaSb) films were deposited onto fused silica and n-Si (100) substrates by coevaporating Ga and Sb from appropriate evaporation sources. The films were polycrystalline in nature. The size and the shape of the grains varied with the change in the substrate temperature during deposition. The average surface roughness of the films was estimated to be 10 nm. Grain boundary trap states varied between 2×1012 and 2.2×1012 cm?2 while barrier height at the grain boundaries varied between 0.09 eV and 0.10 eV for films deposited at higher temperatures. Stress in the films decreased for films deposited at higher temperatures. XPS studies indicated two strong peaks located at ~543 eV and ~1121 eV for Sb 3d3/2 and Ga 2p3/2 core-level spectra, respectively. The PL spectra measured at 300 K was dominated by a strong peak located ~0.55 eV followed by two low intensity peaks ~0.63 eV and 0.67 eV. A typical n-Si/GaSb photovoltaic cell fabricated here indicated V oc~311 mV and J~29.45 mA/cm2, the density of donors (N d)~3.87×1015 cm?3, built in potential (V bi)~0.48 V and carrier life time (τ)~28.5 ms. Impedance spectroscopy measurements indicated a dielectric relaxation time ~100 μs.  相似文献   

17.
The reflectivity of single crystals of LaF3 and PrF3 has been measured using synchrotron radiation. Transitions of the types Pr 4f-5d, fluorine 2p-conduction band and lanthanide 5p-conduction band have been identified. The latter give rise to a number of sharp peaks in the 20–25 eV region which may be excitonic in origin.  相似文献   

18.
We have investigated UV luminescence with a subnanosecond time resolution of Li6GdB3O9:Ce crystal fibers upon their ultrasoft X-ray selective excitation at 10 and 293 K in the range of 4d → 4f core transitions. We have revealed an intense fast-decaying subnanosecond luminescence component, which is caused by a high local density of electronic excitation and Auger core hole relaxation processes, and modulation of the luminescence excitation spectrum by an absorption band of the 4d–4f photoionization giant resonance in the energy range 135–160 eV.  相似文献   

19.
The electronic structure of TiSi and TiSi2 was investigated by means of the energy distribution of photoelectrons emitted from the valence band and core levels. The Ti d-states are dominant at the Fermi level, the Si s-states of both TiSi and TiSi2 were shifted to lower binding energy. The Si p-states are modified having peaks at binding energies 2.7 and 4.2 eV for TiSi2 and 2.8 eV for TiSi but their intensities differ widely. The Si sp-states were not detectable for TiSi and TiSi2 nor was the core level shift for TiSi2.  相似文献   

20.
UV photoemission spectroscopy (UPS) experiments have been carried out on the layer compound ZnIn2S4 employing several different photon energies in the range h?ω = 9.5?21.2 eV. The energy distribution curves (EDC's) exhibit four valence band density of states structures besides the Zn 3d peak. These five peaks appear 0.90 eV, 1.6 eV, 4.3 eV, 5.8 eV and 8.7 eV respectively below the top of the valence band, Ev. The atomic orbital character of the shallowest peak A appears different from that of the three deeper valence band peaks B, C and D and this is discussed in terms of the more or less pronounced ionic character of the intralayer chemical bonds. These results demonstrate that an overall understanding of the electronic states in complex structures can be achieved by an approach based on photoemission experiments and chemical bonding considerations which has been widely used in the past to study simple binary layer compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号