首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A series of PdxNi100−x nanoparticles were prepared by the co-precipitation method and analyzed using a temperature-programmed surface reaction (TPSR) of their methanation reactions. ESCA measurement suggested that the as-prepared Pd-Ni alloys had Pd-core/Ni-shell structure. Surface Pd segregation occurred during H2 reduction and resulted in a surface composition close to the nominal value. The TPSR experiments were performed by pre-adsorption of CO with H2 to form methane. The peak temperature of methanation increased as Pd content increased, indicating that a methanation reaction is favored on Ni and Ni-rich alloy nanoparticles. For physical mixtures of Pd and Ni nanoparticles, methanation behaviors is similar to those of alloy nanoparticles; but the methanation temperatures of physical mixtures are always higher than those of alloy nanoparticles. This may be due to the formation of a Pd-enriched alloy surface layer during reduction in H2 at 400 °C, or because the CO molecules adsorbed on the Pd sites spill over onto the Ni sites for methanation. Using TPSR technique and measuring methanation temperature, the top-most surface of such bimetallic nanoparticles can be probed.  相似文献   

2.
Chalcopyrite Cu(AlxGa1−x)S2 alloy films were successfully grown on GaP substrates by vapor phase epitaxy using metallic chlorides (CuCl, GaCl3 and AlCl3) and H2S as source materials. Photoluminescence (PL) spectra of these films taken under a low excitation density using a super high pressure Hg lamp exhibited broad emissions in the orange region. Photoluminescence excitation (PLE) measurements revealed that these broad emissions are effectively excited at the photon energies of A- and the BC-exciton energies. Under the high excitation density using the pulsed XeCl laser, these alloy films showed the exciton related emissions composed of biexciton recombination, exciton-exciton and exciton-carrier scatterings. The influence of the compositional fluctuation was observed on the increase of the full-width at half maximum (FWHM) for the exciton related emission with increase in composition of x.  相似文献   

3.
We have deposited germanium carbide (Ge1−xCx) films on Si(1 0 0) substrate via radio-frequency (RF) reactive magnetron sputtering in a CH4/Ar mixture discharge, and explored the effects of carbon content (x) on the chemical bonding and hardness for the obtained films. We find that x significantly influences the chemical bonding, which leads to a pronounced change in the hardness of the film. To reveal the relationship between the chemical bonding and hardness, first-principles calculations have been carried out. It is shown that as x increases from 0 to 0.33, the fraction of sp3 C-Ge bonds in the film increases at the expense of Ge-Ge bonds, which promotes formation of a strong covalently bonded network, and thus enhances the hardness of the film. However, as x further increases from 0.33 to 0.59, the fraction of sp3 C-Ge bonds in the film gradually reduces, while that of sp3 C-H and graphite-like sp2 C-C bonds increases, which damages the compact network structure, resulting in a sharp decrease in the hardness. This investigation suggests that the medium x (0.17<x<0.40) is most favorable to the preparation of hard Ge1−xCx films due to the formation of dominant sp3 C-Ge bonds.  相似文献   

4.
Bi5GexSe95−x (30, 35, 40 and 45 at.%) thin films of thickness 200 nm were prepared on glass substrates by the thermal evaporation technique. The influence of composition and annealing temperature, on the structural and electrical properties of Bi5GexSe95−x films was investigated systematically using X-ray diffraction (XRD), energy dispersive X-ray analysis (EDX). The XRD patterns showed that the as-prepared films were amorphous in nature with few tiny crystalline peaks of relatively low intensity for 30 and 45 at.% and the Bi5Ge40Se55 annealed film was polycrystalline. The chemical composition of the Bi5Ge30Se65 film has been checked using energy dispersive X-ray spectroscopy (EDX). The electrical conductivity was measured in the temperature range 300-430 K for the studied compositions. The effect of composition on the activation energy (ΔE) and the density of localized states at the Fermi level N(EF) were studied, moreover the electrical conductivity was found to increase with increasing the annealing temperature and the activation energy was found to decrease with increasing the annealing temperature. The results were discussed on the basis of amorphous-crystalline transformations.  相似文献   

5.
A series of ZnO1−xSx alloy films (0 ≤ x ≤ 1) were grown on quartz substrates by radio-frequency (rf) magnetron sputtering of ZnS ceramic target, using oxygen and argon as working gas. X-ray diffraction measurement shows that the ZnO1−xSx films have wurtzite structure with (0 0 2) preferential orientation in O-rich side (0 ≤ x ≤ 0.23) and zinc blende structure with (1 1 1) preferential orientation in S-rich side (0.77 ≤ x ≤ 1). However, when the S content is in the range of 0.23 < x < 0.77, the ZnO1−xSx film consists of two phases of wurtzite and zinc blende or amorphous ZnO1−xSx phase. The band gap energy of the films shows non-linear dependence on the S content, with an optical bowing parameter of about 2.9 eV. The photoluminescence (PL) measurement reveals that the PL spectrum of the wurtzite ZnO1−xSx is dominated by visible band and its PL intensity and intensity ratio of UV to visible band decrease greatly compared with undoped ZnO. All as-grown ZnO1−xSx films behave insulating, but show n-type conductivity for w-ZnO1−xSx and maintain insulating properties for β-ZnO1−xSx after annealed. Mechanisms of effects of S on optical and electrical properties of the ZnO1−xSx alloy are discussed in the present work.  相似文献   

6.
In this study, TiO2−xNx/TiO2 double layers thin film was deposited on ZnO (80 nm thickness)/soda-lime glass substrate by a dc reactive magnetron sputtering. The TiO2 film was deposited under different total gas pressures of 1 Pa, 2 Pa, and 4 Pa with constant oxygen flow rate of 0.8 sccm. Then, the deposition was continued with various nitrogen flow rates of 0.4, 0.8, and 1.2 sccm in constant total gas pressure of 4 Pa. Post annealing was performed on as-deposited films at various annealing temperatures of 400, 500, and 600 °C in air atmosphere to achieve films crystallinity. The structure and morphology of deposited films were evaluated by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and atomic force microscopy (AFM). The chemical composition of top layer doped by nitrogen was evaluated by X-ray photoelectron spectroscopy (XPS). Photocatalytic activity of samples was measured by degradation of Methylene Blue (MB) dye. The optical transmittance of the multilayer film was also measured using ultraviolet-visible light (UV-vis) spectrophotometer. The results showed that by nitrogen doping of a fraction (∼1/5) of TiO2 film thickness, the optical transmittance of TiO2−xNx/TiO2 film was compared with TiO2 thin film. Deposited films showed also good photocatalytic and hydrophilicity activity at visible light.  相似文献   

7.
MgxZn1−xO alloy films were prepared on sapphire substrates using Ar and N2 as the sputtering gases. The effect of the sputtering gas on the structural, optical and electrical properties of the MgxZn1−xO films was studied. By using N2 as the sputtering gas, the MgxZn1−xO film shows p-type conductivity and the band gap is larger than that employing Ar as the sputtering gas. The reason for this phenomenon is thought to be related to the reaction between N-O or N-Zn, and the N-doping.  相似文献   

8.
Polycrystalline CuIn1−xGaxTe2 bulk films were synthesized by reacting, in stoichiometric proportions, high purity Cu, In, Ga and Te in a vacuum sealed quartz ampoule. The phase structure and composition of the bulk films were analysed by X-ray diffraction and energy-dispersive X-ray analysis, respectively. The bulk samples, of p-type conductivity, are found to be near-stoichiometric, polycrystalline, with tetragonal chalcopyrite structure, predominantly oriented along a direction perpendicular to the (1 1 2) plane. Photoluminescence spectra were recorded at 7 K and 700 mW to characterize the defects and the structural quality. The main peak as a function of composition has been studied.  相似文献   

9.
Thin films of samples of the glassy SxSe100−x system with 0 ≤ x ≤ 7.28 have been prepared by thermal evaporation technique at room temperature (300 K). X-ray investigations show that the structure of pure selenium (Se) does change seriously by the addition of small amount of sulphur S ≤7.28%. The lattice parameters were determined as a function of sulphur content. Results of differential thermal analysis (DTA) of the glassy compositions of the system SxSe100−x were discussed. The characteristic temperatures (Tg, Tc and Tm) were evaluated. Dark electrical resistivities, ρ, of SxSe100−x thin films with different thicknesses from 100 to 500 nm, were measured in the temperature range from 300 to 423 K. Two distinct linear parts with different activation energies were observed. The variation of electrical resistivity of examined compositions has been discussed as a function of the film thickness, temperature and the sulphur content. The application of Mott model for the phonon assisted hopping of small polarons gave the same two activation energies obtained from the resistivity temperature calculations.  相似文献   

10.
We report the growth of cubic MgxZn1−xO alloy thin films on quartz by electron beam evaporation. It can be found that all the samples have sharp absorption edges by the absorption measurements. X-ray diffraction measurements indicate the MgxZn1−xO films are cubic phase with preferred orientation along the (1 1 1) direction. Energy dispersive spectrometry (EDS) demonstrates that the Mg concentration in MgxZn1−xO films is much higher than the ceramic target used, and the composition can be tuned in a small scope by varying the substrate temperature and the beam electric current. The reasons of this phenomenon are also discussed.  相似文献   

11.
The exchange interactions (JBB and JAB are the intra and the inter-sublattice exchange interactions between neighbouring spins, respectively) are obtained by using the general expressions of canting angle and critical temperature obtained by mean field theory of Li0.5Fe2.5−2xAlxCrxO4. The expression of magnetic energy of Li0.5Fe2.5−2xAlxCrxO4 is obtained for different spin configurations and dilution x. The saturation magnetisation of Li0.5Fe2.5-2xAlxCrxO4 is obtained with different values of dilution x. The magnetic phase diagram of Li0.5Fe2.5-2xAlxCrxO4 materials is obtained by high temperature series expansions (HTSEs). The critical exponent associated with the magnetic susceptibility of Li0.5Fe2.5−2xAlxCrxO4 is deduced.  相似文献   

12.
Intense red phosphors, AgGd1−xEux(W1−yMoy)2O8 (x=0.0-1.0, y=0.0-1.0), have been synthesized through traditional solid-state reaction and characterized by X-ray diffraction (XRD) and photoluminescence (PL). XRD results reveal that AgGd1−xEuxW2O8 synthesized at 1000 °C has a tetragonal crystal structure, which is named as high temperature phase (HTP) AgGdW2O8. All phosphors compositions with Eu3+ show red and green emission on excitation either in the charge-transfer or Eu3+ levels. Analysis of the emission spectra with different Eu3+ concentrations reveal that the optimum dopant concentration for Eu3+ is x=0.6 in the HTP AgGd1−xEuxW2O8 (x=0.0-1.0). Studies on the AgGd0.4Eu0.6(W1−yMoy)2O8 (y=0.0-1.0) and AgGd1−xEux(W0.7Mo0.3)2O8 (x=0.0-1.0) show that the emission intensity is maximum for compositions with y=0.3 and x=0.5, respectively, and a decrease in emission intensity is observed for higher y or x values. The Mo6+ and Eu3+ co-doped AgGd(WO4)2 phosphors show higher emission intensity in comparison with the singly Eu3+-doped AgGd(WO4)2 in UV region. The intense emission of the tungstate/molybdate phosphors under 394 and 465 nm excitations, respectively, suggests that these materials are promising candidates as red-emitting phosphors for near-UV/blue GaN-based white LED for white light generation.  相似文献   

13.
CrNx thin films have attracted much attention for semiconductor IC packaging molding dies and forming tools due to their excellent hardness, thermal stability and non-sticking properties (low surface free energy). However, few data has been published on the surface free energy (SFE) of CrNx films at temperatures in the range 20-170 °C. In this study CrNx thin films with CrN, Cr(N), Cr2N (and mixture of these phases) were prepared using closed field unbalanced magnetron sputtering at a wide range of Cr+2 emission intensity. The contact angles of water, di-iodomethane and ethylene glycol on the coated surfaces were measured at temperatures in the range 20-170 °C using a Dataphysics OCA-20 contact angle analyzer. The surface free energy of the CrNx films and their components (e.g., dispersion, polar) were calculated using the Owens-Wendt geometric mean approach. The influences of CrNx film surface roughness and microstructure on the surface free energy were investigated by atomic force microscopy (AFM) and X-ray diffraction (XRD), respectively. The experimental results showed that the lowest total SFE was obtained corresponding to CrN at temperature in 20 °C. This is lower than that of Cr(N), Cr2N (and mixture of these phases). The total SFE, dispersive SFE and polar SFE of CrNx films decreased with increasing surface temperature. The film roughness has an obvious effect on the SFE and there is tendency for the SFE to increase with increasing film surface roughness.  相似文献   

14.
The aim of this work was to study the effect of MoNx film substrates on the structural properties of CuInSe2 films prepared by selenization of metallic Cu-In alloy precursors. MoNx films were prepared by reactive dc-magnetron sputtering. All the CuInSe2 films exhibit single phase chalcopyrite structure with (1 1 2) preferred orientation, which can be explained by the reduction of lattice mismatch between CuInSe2 and MoNx. The bulk composition of selenized CuInSe2 films are near stoichiometric, but the surface composition analysis suggests Cu deficiency on surface area. Furthermore, ordered defect compound, CuIn2Se3.5 is found on the surface of CuInSe2 films. The results will be helpful for fabricating Cd-free ZnO buffer layer CuInSe2 and Cu(In1−xGax)Se2 based thin film solar cells.  相似文献   

15.
SiCxNy thin films with different nitrogen contents were deposited by way of incorporation of different amounts of nitrogen into SiC0.70 using unbalanced reactive dc magnetron sputtering method. Their phase configurations, nanostructures and mechanical behaviors were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, high-resolution transmission electron microscopy (HRTEM) and microindentation methods. The result indicated SiC0.70 and all SiCxNy thin films exhibited amorphous irrespective of the nitrogen content. The phase configuration and mechanical behaviors of SiCxNy thin films strongly depended on nitrogen content. SiC0.70 exhibited a mixture consisting of SiC, Si and a small amount of C. Incorporated nitrogen, on one hand linked to Si, forming SiNx, on the other hand produced CNx and C at the expense of SiC. As a result, an amorphous mixture consisting of SiC, SiNx, C and CNx were produced. Such effects were enhanced with increase of nitrogen content. A low hardness of about 16.5 GPa was obtained at nitrogen-free SiC0.70. Incorporation of nitrogen or increase of nitrogen content increased the film hardness. A microhardness maximum of ∼29 GPa was obtained at a nitrogen content of 15.7 at.%. This value was decreased with further increase of N content, and finally a hardness value of ∼22 GPa was obtained at a N content of ∼25 at.%. The residual compressive stress was consistent with the hardness in the nitrogen content range of 8.6-25.3 at.%.  相似文献   

16.
BiFeO3/Zn1−xMnxO (x = 0-0.08) bilayered thin films were deposited on the SrRuO3/Pt/TiO2/SiO2/Si(1 0 0) substrates by radio frequency sputtering. A highly (1 1 0) orientation was induced for BiFeO3/Zn1−xMnxO. BiFeO3/Zn1−xMnxO thin films demonstrate diode-like and resistive hysteresis behavior. A remanent polarization in the range of 2Pr ∼ 121.0-130.6 μC/cm2 was measured for BiFeO3/Zn1−xMnxO. BiFeO3/Zn1−xMnxO (x = 0.04) bilayer exhibits a highest Ms value of 15.2 emu/cm3, owing to the presence of the magnetic Zn0.96Mn0.04O layer with an enhanced Ms value.  相似文献   

17.
The ceria-zirconium-modified alumina-supported palladium catalysts are prepared using impregnation method with H2PdCl4 as Pd source, hydrazine hydrate as reducing agent. The physicochemical properties of these catalysts are characterized by BET surface area (BET), X-ray powder diffraction (XRD), transmission electron microscopy (TEM), temperature programmed reduction (H2-TPR) and temperature programmed oxidation (O2-TPO) techniques, and their catalytic activities for the combustion of methane are examined. The results show that the palladium mainly exist in a highly dispersed PdO species on Ce-Zr-rich grains as well as Al2O3-rich grains surfaces, and a stable PdO species due to the strong interaction between PdO and CeO2-ZrO2 on the Ce-Zr/Al2O3 surfaces. The catalytic activity is strongly related to the redox behavior of PdO species highly dispersed on Ce-Zr-rich grains and Al2O3-rich grains surfaces, and the higher the reducibility of the PdO species, the higher the catalytic activity. The presence of Ce-Zr in Pd/Al2O3 catalyst would inhibit the site growth of PdOx particles and decomposition of PdO to Pd0, and the reoxidation property of Pd0 to PdOx is significantly improved, which obviously increases thermal stability and catalytic activity of Pd/Ce-Zr/Al2O3 catalyst for the methane combustion.  相似文献   

18.
Two nanocomposite Ti-Cx-Ny thin films, TiC0.95N0.60 and TiC2.35N0.68, as well as one pure TiN, were deposited at 500 °C on Si(1 0 0) substrate by reactive unbalanced dc-magnetron sputtering. Oxidation experiments of these films were carried out in air at fixed temperatures in a regime of 250-600 °C with an interval of 50 °C. As-deposited and oxidized films were characterized and analyzed using X-ray diffraction (XRD), microindentation, Newton's ring methods and atomic force microscopy (AFM). It was found that the starting oxidation temperature of nanocomposite Ti-Cx-Ny thin films was 300 °C irrespective of the carbon content; however their oxidation rate strongly depended on their carbon content. Higher carbon content caused more serious oxidation. After oxidation, the film hardness value remained up to the starting oxidation temperature, followed by fast decrease with increasing heating temperature. The residual compressive stress did not show a similar trend with the hardness. Its value was first increased with increase of heating temperature, and got its maximum at the starting oxidation temperature. A decrease in residual stress was followed when heating temperature was further increased. The film surface roughness value was slightly increased with heating temperature till the starting oxidation temperature, a great decrease in surface roughness was followed with further increase of heating temperature.  相似文献   

19.
CuIn(SxSe1−x)2 thin polycrystalline films were grown by the chemical spray pyrolysis method on the glass substrate at 280-400°C. The alloy composition in the film was studied with relation to that in the splay solution. Films were characterized by X-ray diffraction, optical absorption, Raman spectroscopy, resistivity and surface morphology. The CuInSe2-rich alloy films grown at high substrate temperature had chalcopyrite structure, while, the CuInS2-rich films grown at low substrate temperature exhibited sphalerite structure. Optical-gap energies were smaller than that of the bulk crystal by 0.1-0.2 eV for CuInS2-rich films. Raman spectra exhibited both CuInSe2-like and CuInS2-like A1 modes, and their relative changed systematically with alloy composition.  相似文献   

20.
Structural, electrical and optical properties of Al doped ZnO (Al:ZnO) thin film of various thicknesses, grown by radio-frequency magnetron sputtering system were studied in relation to the application as a window layer in Cu(In1−xGax)Se2 (CIGS) thin film solar cell. It was found that the electrical and structural properties of Al:ZnO film improved with increasing its thickness, however, the optical properties degraded. The short circuit current density, Jsc of the fabricated CIGS based solar cells was significantly influenced by the variation of the Al:ZnO window layer thickness. Best efficiency was obtained when CIGS solar cell was fabricated with electrically and optically optimized Al:ZnO window layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号