首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epitaxial ultrathin NiFe2O4 films were deposited on 1 wt% Nb-doped SrTiO3 (0 0 1) substrates by reactive cosputtering to form junctions with an area of ∼2 mm2, and current-voltage curves show rectifying and asymmetrical hysteresis characteristics. The resistance calculated from the current-voltage curves is strongly voltage dependent, and the hysteretic loops with high and low resistive states were observed. The hysteretic loops are considered to stem from the capacitance effect of the highly resistive NiFe2O4 layer, which leads to charge accumulation at the interfaces. The results show that the interfaces of the junctions have a large areal capacitance of ∼100 nF/mm2 from 300 to 120 K.  相似文献   

2.
In this work we report a study of the magnetic behavior of ferrimagnetic oxide CoFe2O4 and ferrimagnetic oxide/ferromagnetic metal CoFe2O4/CoFe2 nanocomposite. The latter compound is a good system to study hard ferrimagnet/soft ferromagnet exchange coupled. Two steps were followed to synthesize the bimagnetic CoFe2O4/CoFe2 nanocomposite: (i) first, preparation of CoFe2O4 nanoparticles using a simple hydrothermal method, and (ii) second, reduction reaction of cobalt ferrite nanoparticles using activated charcoal in inert atmosphere and high temperature. The phase structures, particle sizes, morphology, and magnetic properties of CoFe2O4 nanoparticles were investigated by X-Ray diffraction (XRD), Mossbauer spectroscopy (MS), transmission electron microscopy (TEM), and vibrating sample magnetometer (VSM) with applied field up to 3.0 kOe at room temperature and 50 K. The mean diameter of CoFe2O4 particles is about 16 nm. Mossbauer spectra revealed two sites for Fe3+. One site is related to Fe in an octahedral coordination and the other one to the Fe3+ in a tetrahedral coordination, as expected for a spinel crystal structure of CoFe2O4. TEM measurements of nanocomposite showed the formation of a thin shell of CoFe2 on the cobalt ferrite and indicate that the nanoparticles increase to about 100 nm. The magnetization of the nanocomposite showed a hysteresis loop that is characteristic of exchange coupled systems. A maximum energy product (BH)max of 1.22 MGOe was achieved at room temperature for CoFe2O4/CoFe2 nanocomposites, which is about 115% higher than the value obtained for CoFe2O4 precursor. The exchange coupling interaction and the enhancement of product (BH)max in nanocomposite CoFe2O4/CoFe2 are discussed.  相似文献   

3.
Magnetotransport properties of magnetite thin films deposited on gallium arsenide and sapphire substrates at growth temperatures between 473 and 673 K are presented. The films were grown by UV pulsed laser ablation in reactive atmospheres of O2 and Ar, at working pressure of 8 × 10−2 Pa. Film stoichiometry was determined in the range from Fe2.95O4 to Fe2.97O4. Randomly oriented polycrystalline thin films were grown on GaAs(1 0 0) while for the Al2O3(0 0 0 1) substrates the films developed a (1 1 1) preferred orientation. Interfacial Fe3+ diffusion was found for both substrates affecting the magnetic behaviour. The temperature dependence of the resistance and magnetoresistance of the films were measured for fields up to 6 T. Negative magnetoresistance values of ∼5% at room temperature and ∼10% at 90 K were obtained for the as-deposited magnetite films either on GaAs(1 0 0) or Al2O3(0 0 0 1).  相似文献   

4.
Single domain magnetic CoFe2O4 nanoparticles with spinel structure were prepared by the coprecipitation method. Particles with size of 16, 20, 40 and 60 nm were synthesized by sintering the precursor at 500, 600, 800 and 900 °C, respectively. The magnetic hysteresis measurement of CoFe2O4 particles showed that particles were single domain particles with similar saturation magnetization (∼300 emu/cm3) at room temperature. The zeta potential study of suspensions (CoFe2O4-acetylacetone system) with various particle sizes showed the suspension systems had similar zeta potential values (∼40 mV). The effects of magnetic particle size on the suspension stability characterized by electrophoretic deposition yields and sediment volumes were studied. The suspension stability decreased with an increase in particle size and a flocculation threshold of particle radius a was found at 30 nm. A suspension stability theory approaching to the phenomenon was established. The theory based on the DLVO theory was developed by introducing an extra magnetic interaction force. Dormann model was adopted, in which the magnetic interactions of two spherical nanoparticles were investigated in terms of dipole-dipole interactions. Compared to DLVO, suspension's physical parameters not only zeta potential ζ and the Debye length 1/κ, but also particles' radius a brought about stable to flocculation transition in the theory.  相似文献   

5.
CoFe2O4 thin films were grown on silicon substrates by pulsed-laser deposition techniques at various temperatures from 350 °C to 700 °C and different pressures from 0.1 Pa to 10 Pa. The CoFe2O4 films with highly (1 1 1)-preferred orientation and smooth surfaces were obtained. The high coercivities of the films were attributed to the residual stress in the films, and the saturation magnetizations were mainly dependent on the oxygen pressure. Higher oxygen pressure could decrease the oxygen deficiencies in the films. Sufficient oxygen ions in the films enhanced the exchange interactions between the magnetic ions, as a result, increasing the saturation magnetization.  相似文献   

6.
Multi-functional magnetic, photoluminescent and photocatalytic CoFe2O4-ZnO nanocomposites were successfully synthesized by a collosol method. The average diameter of the prepared CoFe2O4-ZnO nanocomposites was 30±5 nm, and a diffusion layer was formed to link CoFe2O4 and ZnO. The saturation magnetization of the CoFe2O4-ZnO nanocomposites was 8.99 emu/g. Generation of ZnO from Zn(OH)2 collosol was nearly complete after thermal decomposition at about 380 °C. A photoluminescence emission peak was observed at 443 nm when excitated at 350 nm. Degradation of methyl orange is performed by CoFe2O4-ZnO nanocomposites under ultraviolet radiation, with a degradation rate of up to 93.9%.  相似文献   

7.
The structural, microstructural and magnetic properties of nanoferrite NiFe2O4 (NF), CoFe2O4 (CF) and MnFe2O4 (MF) thin films have been studied. The coating solution of these ferrite films was prepared by a chemical synthesis route called sol-gel combined metallo-organic decomposition method. The solution was coated on Si substrate by spin coating and annealed at 700 °C for 3 h. X-ray diffraction pattern has been used to analyze the phase structure and lattice parameters. The scanning electron microscopy (SEM) and atomic force microscopy (AFM) have been used to show the nanostructural behavior of these ferrites. The values of average grain's size from SEM are 44, 60 and 74 nm, and from AFM are 46, 61 and 75 nm, respectively, measured for NF, CF and MF ferrites. At room temperature, the values of saturation magnetization, Ms∼50.60, 33.52 and 5.40 emu/cc, and remanent magnetization, Mr∼14.33, 15.50 and 1.10 emu/cc, respectively, are observed for NF, CF and MF. At low temperature measurements of 10 K, the anisotropy of ferromagnetism is observed in these ferrite films. The superparamagnetic/paramagnetic behavior is also confirmed by χ′(T) curves of AC susceptibility by applying DC magnetizing field of 3 Oe. The temperature dependent magnetization measurements show the magnetic phase transition temperature.  相似文献   

8.
A chemical spray pyrolysis technique for deposition of p-type Mg-doped CuCrO2 transparent oxide semiconductor thin films using metaloorganic precursors is described. As-deposited films contain mixed spinel CuCr2O4 and delafossite CuCrO2 structural phases. Reduction in spinel CuCr2O4 fraction and formation of highly crystalline films with single phase delafossite CuCrO2 structure is realized by annealing at temperatures ?700 °C in argon. A mechanism of synthesis of CuCrO2 films involving precursor decomposition, oxidation and reaction between constituent oxides in the spray deposition process is presented. Post-annealed CuCr0.93Mg0.07O2 thin films show high (?80%) visible transmittance and sharp absorption at band gap energy with direct and indirect optical band gaps 3.11 and 2.58 eV, respectively. Lower (∼450 °C) substrate temperature formed films are amorphous and yield lower direct (2.96 eV) and indirect (2.23 eV) band gaps after crystallization. Electrical conductivity of CuCr0.93 Mg0.07O2 thin films ranged 0.6-1 S cm−1 and hole concentration ∼2×1019 cm−3 determined from Seebeck analysis. Temperature dependence of conductivity exhibit activation energies ∼0.11 eV in 300-470 K and ∼0.23 eV in ?470 K region ascribed to activated conduction and grain boundary trap assisted conduction, respectively. Heterojunction diodes of the structure Au/n-(ZnO)/p-(CuCr0.93Mg0.07O2)/SnO2 (TCO) were fabricated which show potential for transparent wide band gap junction device.  相似文献   

9.
CoFe2O4/Fe3O4 nano-composite ceramics were synthesized by Spark Plasma Sintering. The X-ray diffraction patterns show that all samples are composed of CoFe2O4 and Fe3O4 phases when the sintering temperature is below 900 °C. It is found that the magnetic properties strongly depend on the sintering temperature. The two-step hysteresis loops for samples sintered below 500 °C are observed, but when sintering temperature reaches 500 °C, the step disappears, which indicates that the CoFe2O4 and Fe3O4 are well exchange coupled. As the sintering temperature increases from 500 to 800 °C, the results of X-ray diffractometer indicate the constriction of crystalline regions due to the ion diffusion at the interfaces of CoFe2O4/Fe3O4 phases, which have great impact on the magnetic properties.  相似文献   

10.
We have prepared composite magnetic core–shell particles using the process of soap-free emulsion polymerization and the co-precipitation method. The shell of the synthesized composite sphere is cobalt ferrite (CoFe2O4) nanoparticles and the core consists of poly(styrene-co-methacrylic acid) polymer. The mean crystallite sizes of the coated CoFe2O4 nanoparticles were controlled in the range of 2.4–6.7 nm by the concentration of [NH4+] and heated temperature. The magnetic properties of the core–shell spherical particles can go from superparamagnetic to ferromagnetic behavior depending on the crystalline sizes of CoFe2O4.  相似文献   

11.
Cobalt-substituted ferrite nanoparticles were synthesized with a narrow size distribution using reverse micelles formed in the system water/AOT/isooctane. Fe:Co ratios of 3:1, 4:1, and 5:1 were used in the synthesis, obtaining cobalt-substituted ferrites (CoxFe3−xO4) and some indication of γ-Fe3O4 when 4:1 and 5:1 Fe:Co ratios were used. Inductively coupled plasma mass spectroscopy (ICP-MS) verified the presence of cobalt in all samples. Fourier transform infrared (FTIR) showed bands at ∼560 and ∼400 cm−1, characteristic of the metal–oxygen bond in ferrites. Transmission electron microscopy showed that the number median diameter of the particles was ∼3 nm with a geometric deviation of ∼0.2. X-ray diffraction (XRD) confirmed the inverse spinel structure typical of ferrites with a lattice parameter of a=8.388 Å for Co0.61Fe0.39O4, which is near that of CoFe2O4 (a=8.394 Å). Magnetic properties were determined using a superconducting quantum interference device (SQUID). Coercivities higher than 8 kOe were observed at 5 K, whereas at 300 K the particles showed superparamagnetic behavior. The anisotropy constant was determined based on the Debye model for a magnetic dipole in an oscillating field and an expression relating χ′ and the temperature of the in-phase susceptibility peak. Anisotropy constant values in the order of ∼106 erg/cm3 were determined using the Debye model, whereas anisotropy constants in the order of ∼107 erg/cm3 were calculated assuming Ωτ=1 at the temperature peak of the in-phase component of the susceptibility curve as commonly done in the literature. Our analysis demonstrates that the assumption Ωτ=1 at the temperature peak of χ′ is rigorously incorrect.  相似文献   

12.
Electrophoretic deposition was utilized for preparation of BaTiO3/CoFe2O4 multiferroic composite thick films on indium-tin oxide substrates. The suspensions for electrophoretic experiments were prepared by dispersing BaTiO3 and CoFe2O4 nanoparticles with different molar ratios into solvents composed of ethanol and acetylacetone. Polyvinyl butyral was added to the suspensions in order to enhance the adhesion and strength of deposit and prevent cracking. The zeta potential values of BaTiO3/CoFe2O4 suspensions were measured to be 26.4-36.9 mV. The experiment results showed that deposited films were obtained only when the applied electric field was larger than a certain critical value. XRD and SEM analysis depicted the presence of constituent phases in composite films. The percolation threshold of composite films was improved through dispersing ferromagnetic phase into ferroelectric phase. Therefore, the ferroelectric properties of composite thick films were maintained when the ferromagnetic properties were enhanced significantly with increasing CFO content.  相似文献   

13.
Cobalt-ferrite (CoFe2O4) based materials are suitable candidates for magnetomechanical sensor applications owing to a strong sensitivity of their magnetostriction to an applied magnetic field. Zn-doped cobalt-ferrites, with nominal compositions CoFe2−xZnxO4 (x=0–0.3), were synthesized by auto-combustion technique using Co- , Fe- , and Zn-nitrate as precursors. X-ray spectra analysis and Transmission electron microscopy studies revealed that the as-prepared powders were comprised of nano-crystalline (∼25–30 nm) cubic-spinel phase with irregularly-shaped grains morphology along with minor impurity phases. Calcination (800 °C for 3 h) of the precursor followed by sintering (1300 °C for 12 h) resulted in a single phase cubic-spinel structure with average grain size ∼2–4 μm, as revealed from scanning electron micrographs. The magnitude of coercive field decreases from ∼540 Oe for x=0 to 105 Oe for x=0.30. Saturation magnetization initially increases and peaks to ∼87 emu/g for x=0.2 and then decreases. The peak value of magnetostriction monotonically decreases with increasing Zn content in the range 0.0–0.3; however the piezomagnetic coefficient (/dH) reaches a maximum value of 105×10−9 Oe−1 for x=0.1. The observed variation in piezomagnetic coefficient in the Zn substituted cobalt ferrite is related to the reduced anisotropy of the system. The Zn-doped cobalt-ferrite (x=0.1) having high strain derivative could be a potential material for stress sensor application.  相似文献   

14.
Bi0.8La0.2FeO3/CoFe2O4 (BLFO/CFO) multilayer thin films (totally 20 layers BLFO and 19 layers CFO) were prepared on Pt/Ti/SiO2/Si substrates by pulsed laser deposition. X-ray diffraction and transmission electron microscope measurements show that the films are polycrystalline and consisted of multilayered structure. Ferroelectric hysteresis loops with remnant polarization and saturated polarization of 4.2 and 13.3 μC/cm2, respectively, were observed. On the other hand, the films show well-shaped magnetization hysteresis loops with saturated and remnant magnetization of 34.7 and 11.4 emu/cm3, respectively, which are significantly larger than pure BLFO thin films deposited under the same conditions. These results indicate that constructing epitaxial superlattice might be a promising way to fabricate multiferroics with improved properties.  相似文献   

15.
We report the influence of crystal orientation on the magnetic properties of CoFe2O4 (CFO) thin films grown on single crystal Si (1 0 0) and c-cut sapphire (Al2O3) (0 0 0 1) substrates using pulsed laser deposition technique. The thickness was varied from 200 to 50 nm for CFO films grown on Si substrates, while it was fixed at 200 nm for CFO films grown on Al2O3 substrates. We observed that the 200 and 100 nm thick CFO-Si films grew in both (1 1 1) and (3 1 1) directions and displayed out-of-plane anisotropy, whereas the 50 nm thick CFO-Si film showed only an (1 1 1) orientation and an in-plane anisotropy. The 200 nm thick CFO film grown on an Al2O3 substrate was also found to show a complete (1 1 1) orientation and a strong in-plane anisotropy. These observations pointed to a definite relation between the crystalline orientation and the observed magnetic anisotropy in the CFO thin films.  相似文献   

16.
The role of inorganic ceramic fillers namely nanosized Al2O3 (15-25 nm) and TiO2 (10-14 nm) and ferroelectric filler SrBi4Ti4O15 (SBT CIT) (0.5 μm) synthesized by citrate gel technique (CIT) on the ionic conductivity and electrochemical properties of polymer blend 15 wt% PMMA+PEO8:LiClO4+2 wt% EC/PC electrolytes were investigated. Enhancement in conductivity was obtained with a maximum of 0.72×10−5 S cm−1 at 21 °C for 2 wt% of SrBi4Ti4O15 (SBT CIT) composite polymer electrolyte. The lithium-ion transport number and the electrochemical stability of the composite polymer electrolytes at ambient temperature were analyzed. An enhancement in electrochemical stability was observed for polymer composites containing 2 wt% of SrBi4Ti4O15 (SBT CIT) as fillers.  相似文献   

17.
We present a method to form semiconductor nanodots on Si substrates by using ultrathin Si oxide technology and the results on their optical properties. We can form ultra-small semiconductor nanodots with the size of ∼5 nm and ultra-high density of ∼1012 cm−2 on Si surfaces covered with ultrathin SiO2 films of ∼0.3 nm thickness. We focus on photoluminescence and electroluminescence properties of Ge nanodots embedded in Si films. These structures exhibit intense luminescence in the energy region of about 0.8 eV.  相似文献   

18.
CdIn2O4 thin films were prepared by direct-current (DC) reactive magnetron sputtering. The structure, surface morphology and the chemical composition of the thin films were analyzed by X-ray diffraction (XRD), atomic force microscope (AFM) and X-ray photoelectron spectroscopy (XPS), respectively. The electrical properties of the films prepared in different oxygen concentration and annealing treatment were determined, and the effects of the preparing conditions on the structure and electrical properties were also explored. It indicates that the CdIn2O4 thin films with uniform and dense surface morphology contain mainly CdIn2O4, In2O3 phases, and CdO phase is also observed. The XPS analysis confirms the films are in oxygen-deficient state. The electrical properties of these films significantly depend on the preparing conditions, the resistivity of the films with the oxygen concentration of 4.29% is 2.95 × 10−4 Ω cm and the Hall mobility is as high as 60.32 cm2/V s. Annealing treatment can improve the electrical performance of the films.  相似文献   

19.
Nanocrystalline CoFe2O4 ferrite with crystallite sizes of 30 nm have been successfully prepared by an emulsion method. X-ray diffractometer (XRD) shows that nanocrystalline CoFe2O4 ferrite possesses face center cubic structure. Crystal structure of the CoFe2O4 nanocrystals will not be changed by the applied magnetic field and pressures. The obtained CoFe2O4 nanocrystalline powders were pressed into thin columns with different pressures. Meanwhile, the dependences of the applied pressures and the direction of applied magnetic field on the magnetic properties of the CoFe2O4 nanocrystals were investigated in detail using vibrating sample magnetometer (VSM). The pressed CoFe2O4 nanocrystal gains the most excellent magnetisms in a parallel applied magnetic field.  相似文献   

20.
Nanocomposite made of 10 wt% of Co2.4Al0.6O4 particles dispersed in an amorphous SiO2 matrix has been synthesized by a sol-gel method. X-ray diffraction, transmission electron microscopy and magnetic measurements have been used to characterize the properties of nanocomposite. Most of the particles are well crystallized and have an average diameter below 100 nm. Smaller particles with size below 10 nm have also been observed. A large value of the effective magnetic moment per Co2+ ion of 5.08 μB and negative and the low Curie-Weiss paramagnetic temperature Θ∼−6 K, obtained from the high-temperature susceptibility data, indicate a possible mixing of Co2+ and Co3+ ions between tetrahedral and octahedral sites of the spinel crystal lattice. The measurements of static and dynamic magnetic susceptibilities have shown that Co2.4Al0.6O4 particles in SiO2 matrix display a spin glass behavior at low temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号