首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Magnetization and susceptibility were investigated as a function of temperature and magnetic field in polycrystalline Mn[Cr0.5Ga1.5]S4 spinel. The dc susceptibility measurements at 919 Oe showed a disordered ferrimagnetic behaviour with a Curie-Weiss temperature θCW=−55 K and an effective magnetic moment of 5.96 μB close to the spin-only value of 6.52 μB for Cr3+ and Mn2+ ions in the 3d3 and 3d5 configurations, respectively. The magnetization measured at 100 Oe revealed the multiple magnetic transitions with a sharp maximum at the Néel temperature TN=3.9 K, a minimum at the Yafet-Kittel temperature TYK=5 K, a broad maximum at the freezing temperature Tf=7.9 K, and an inflection point at the Curie temperature TC=48 K indicating a transition to paramagnetic phase. A large splitting between the zero-field-cooled (ZFC) and field-cooled (FC) magnetizations at a temperature smaller than TC suggests the presence of spin-glass-like behaviour. This behaviour is considered in a framework of competing interactions between the antiferromagnetic ordering of the A(Mn) sublattice and the ferromagnetic ordering of the B(Cr) sublattice.  相似文献   

2.
Magnetization and neutron diffraction studies have been performed on Ce4Sb3 compound (cubic Th3P4-type, space group I4¯3d, no. 220). Magnetization of Ce4Sb3 reveals a ferromagnetic transition at ∼5 K, the temperature below which the zero-field-cooled and field-cooled magnetization bifurcate in low applied fields. However, a saturation magnetization (MS) value of only ∼0.93μB/Ce3+ is observed at 1.8 K, suggesting possible presence of crystal field effects and a paramagnetic/antiferromagnetic Ce3+ moment. Magnetocaloric effect in this compound has been computed using the magnetization vs. field data obtained in the vicinity of the magnetic transition, and a maximum magnetic entropy change, −ΔSM, of ∼8.9 J/kg/K is obtained at 5 K for a field change of 5 T. Inverse magnetocaloric effect occurs at ∼2 K in 5 T indicating the presence of antiferromagnetic component. This has been further confirmed by the neutron diffraction study that evidences commensurate antiferromagnetic ordering at 2 K in zero magnetic field. A magnetic moment of ∼1.24μB/Ce3+ is obtained at 2 K and the magnetic moments are directed along Z-axis.  相似文献   

3.
The structural and magnetic properties of epitaxial In1−xMnxAs1−yPy quaternary layers with Mn content ranging from 0.01 to 0.04 and phosphorous content ranging from 0.11 to 0.21 were studied. X-ray diffraction indicated that the films were two phase consisting of an InMnAsP solid solution and hexagonal MnAs nanoprecipitates. Addition of phosphorus promoted precipitate formation. Films were ferromagnetic showing hysteretic behavior in the field dependence of magnetization at 5 and 298 K. From field-cooled magnetization measurements ferromagnetic transitions were observed at 280 and 325 K. The zero field-cooled magnetization versus temperature measurements showed irreversibility for T<300 K that was attributed to the presence of MnAs nanoprecipitates. The calculated coercivity using the Neel model was 1380 G compared to the experimental value of 380 G at 5 K. The difference was attributed to a strong inter-cluster exchange that stabilizes the ferromagnetic state.  相似文献   

4.
In this work we describe the synthesis and characterization of maghemite nanoparticles obtained by a new synthetic route. The material was synthesized using triethylamine as a coprecipitation agent in the presence of the organic ligand N,N′-bis(3,5-di-tert-butyl-catechol)-2,4-diaminotoluene (LCH3). Mössbauer spectrum at 4 K shows typical hyperfine parameters of maghemite and Transmission Electron Microscopy images reveal that the nanoparticles have a mean diameter of 3.9 nm and a narrow size distribution. AC magnetic susceptibility in zero field presents an Arrhenius behavior with unreasonable relaxation parameters due to the strong influence of dipolar interaction. In contrast when the measurements are performed in a 1 kOe field, the effect of dipolar interactions becomes negligible and the obtained parameters are in good agreement with the static magnetic properties. The dynamic energy barrier obtained from the AC susceptibility results is larger than the expected from the average size observed by HRTEM results, evidencing the strong influence of the surface contribution to the anisotropy.  相似文献   

5.
V-substituted LiMnPO4 has been synthesized by the solid state reaction route. Combined Rietveld refinement of neutron and X-ray data revealed that all vanadium ions are located in the same positions as the phosphorus ions. The magnetic structure of LiMnP0.85V0.15O4 was found to be the same as that described for undoped antiferromagnetic LiMnPO4 (TN=34.5 K). DC-magnetization measurements were carried out to study the peculiarities of magnetic ordering in LiMnP0.85V0.15O4. An irreversible behavior of DC magnetization was found at magnetic fields less than ∼2 kOe. It was demonstrated that an increase in the magnitude of the applied field leads to a reduction of the discrepancy between zero-field-cooled and field-cooled processes. These effects were explained by the movement of domain walls and by transition of the system to a monodomain state. The anomaly in the magnetization vs field dependence attributed presumably to the spin-flop transition was observed at ∼40 kOe. The existence of magnetic inhomogeneity in the paramagnetic phase of LiMnP0.85V0.15O4 was proved by the analysis of the χ?T product. It was concluded that the observed changes in χ?T are indicative of a competition between ferromagnetic and antiferromagnetic correlations at temperatures slightly exceeding TN.  相似文献   

6.
The magnetic properties of four compounds in the series CaBaCo4−xyZnxAlyO7 (x=0,1,2, y=0,1) were investigated. Using AC-susceptibility and DC-magnetometry, magnetic transitions (Tfs) were found for all four compositions in the range 50-3 K. The data from the AC measurements proved to be frequency dependent: Tf increases with higher frequencies. An energy-loss in the magnetic coupling, indicated as contributions in the imaginary part of the magnetic susceptibility (χ″), was seen for every compound and its maximum appeared just below the maximum χ′. Modelling the data with Arrhenius-, Vogel-Fulcher-, and the power-law made it possible to relate the four compounds to spin-glass materials. The Casimir-du Pré relation was used to extract average relaxation times at Tf. The DC magnetisations clearly show differences between field-cooled and zero-field-cooled measurements. None of the compounds exhibit any metamagnetic properties up to 8 T. A new method is presented to calculate the saturation fields using DC data. Relaxation measurements on three compounds indicate that the systems relax very fast, in contrast to spin-glasses. Aging does not affect the fast relaxations. The compounds are interpreted as disordered anti-ferromagnets with spin-glass features.  相似文献   

7.
Hydrogen absorption properties of SmNiAl were systematically investigated between room temperature and 673 K over the pressure range from 0 to 10 MPa. It absorbs hydrogen without clear plateaus, forms hydride SmNiAlHx (x=0.75–2.04) without structural change below 623 K and decomposes into SmH2 and NiAl at higher temperatures. Then, the magnetic curves, the field-cooled (FC) and the zero-field-cooled (ZFC) susceptibilities of SmNiAl and its hydride were investigated. SmNiAl behaves as paramagnetic above 65 K, but has three antiferromagnetic transitions at lower temperatures. Hydrogenation enhances its magnetism, but weakens the interaction between magnetic moments. In the FC process, hydrogenation especially induces an anomalous diamagnetism. Mechanisms for the hydrogen absorption, structural change and magnetism were discussed.  相似文献   

8.
The heat capacity of cerium zirconate pyrochlore, Ce2Zr2O7, was measured from 0.4 to 305 K by hybrid adiabatic relaxation method for various magnetic field strengths. Magnetisation measurements were performed on the sample also. The results revealed a low-temperature anomaly that showed Schottky-type characteristics with increasing magnetic field strength. The estimated entropy due to the magnetic ordering of the two Ce3+ moments is 1.37R, close to the theoretical value for a doublet ground state (1.39R). The enthalpy increments relative to 298.15 K were measured by drop calorimetry from 531 to 1556 K. The obtained results significantly differ from those reported in the literature; the origin of the discrepancy is due to the probable oxidation of the pyrochlore structure into fluorite.  相似文献   

9.
Magnetic properties and the magnetocaloric effect of the compound TbPdAl are investigated. The compound exhibits a weak antiferromagnetic (AFM) coupling, and undergoes two successive AFM transitions at TN=43 K and Tt=22 K. A field-induced metamagnetic transition from AFM to ferromagnetic (FM) state is observed below TN, and a small magnetic field can destroy the AFM structure of TbPdAl, inducing an FM-like state. The maximal value of magnetic entropy change is −11.4 J/kg K with a refrigerant capacity of 350 J/kg around TN for a field change of 0-5 T. Good magnetocaloric properties of TbPdAl result from the high saturation magnetization caused by the field-induced AFM-FM transition.  相似文献   

10.
The SQUID and the 57Fe Mössbauer spectroscopy studies of the magnetic properties of monomeric and dimeric forms of iron porphyrin were performed between 2 and 305 K. The effective magnetic relaxation rate of the Fe atoms in iron porphyrin monomers exhibits complex temperature dependence, resulting from the competing spin-spin and spin-lattice relaxation processes. The dimerization of iron porphyrin dramatically speeds up the magnetic relaxation. The Fe-Fe antiferromagnetic exchange coupling constant in Fe-O-Fe dimer is J≈−110 cm−1. The complementary application of SQUID and the Mössbauer spectroscopy is proposed as a new precise quantitative analytical methodology for monitoring of the aggregation process of iron porphyrin.  相似文献   

11.
We use dynamic susceptometry measurements to extract semiempirical temperature-dependent, 255-400 K, magnetic parameters that determine the behavior of single-core nanoparticles useful for SQUID relaxometry in biomedical applications. Volume susceptibility measurements were made in 5 K degree steps at nine frequencies in the 0.1-1000 Hz range, with a 0.2 mT amplitude probe field. The saturation magnetization (Ms) and anisotropy energy density (K) derived from the fitting of theoretical susceptibility to the measurements both increase with decreasing temperature; good agreement between the parameter values derived separately from the real and imaginary components is obtained. Characterization of the Néel relaxation time indicates that the conventional prefactor, 0.1 ns, is an upper limit, strongly correlated with the anisotropy energy density. This prefactor decreases substantially for lower temperatures as K increases. We find, using the values of the parameters determined from the real part of the susceptibility measurements at 300 K, that SQUID relaxometry measurements of relaxation and excitation curves on the same sample are well described.  相似文献   

12.
Metal organic chemical vapor deposition (MOCVD) has been used to grow vanadium-doped GaN (GaN:V) on c-sapphire substrate using VCl4 as the V source. The as-grown GaN:V exhibited a saturated magnetic moment (Ms) of 0.28 emu/cm3 at room temperature. Upon high-temperature annealing treatment at 1100 °C for 7 min under N2 ambient, the Ms of the GaN:V increased by 39.28% to 0.39 emu/cm3. We found that rapid thermal annealing leads to a remarkable increase in surface roughness of the V-doped GaN as well as the electron concentration. The annealing also leads to a significant increase in the Curie temperature (TC), we have identified Curie temperatures about 350 K concluded from the difference between the field-cooled and zero-field-cooled magnetizations. Structure characterization by x-ray diffraction indicated that the ferromagnetic properties are not a result of secondary magnetic phases.  相似文献   

13.
The magnetic entropy change in GdCo13−xSix (x=3.8, 4, 4.1, and 4.2) intermetallic compounds has been investigated by means of magnetic measurements in the vicinity of their Curie temperature. It was found that the magnetic ordering temperatures decrease from 60 K at x=3.8 to 28 K for x=4.2. The magnetic entropy change is calculated from isothermal magnetization versus magnetic field at various temperatures using the Maxwell relation. As a result, the maximum magnetic entropy changes of the investigated compounds, at their Curie temperatures, decrease from 11.5 J/kg K for x=4.2 to 6.86 J/kg K for x=3.8 in a field change of 0-3 T, whereas it decreases from 5.13 J/kg K for x=4.2 to 2.60 J/kg K for x=3.8 in a field change of 0-1 T. Moreover, the maximum value of the magnetic entropy change obtained at a higher field for GdCo13−xSix with x=4 (23.75 J/kg K at 5 T) is comparable to that of various types of compounds with a cubic NaZn13-type structure. Finally, the maximum of the magnetic entropy change is found to decrease with increasing Si content.  相似文献   

14.
We have studied the Exchange Bias (EB) effect in nanocomposite films consisting of Fe nanoparticles (mean size ∼1.9 nm) embedded in an antiferromagnetic Mn matrix. They were produced by co-deposition through a gas aggregation cluster source and molecular beam epitaxy and have different Fe volume filling fractions (2.2% and 24.8%). The exchange field, higher in the sample with higher Fe concentration (at T=5 K, Hex∼460 Oe for 24.8% and ∼310 Oe for 2.2% ), in both the samples decreases with increasing T, finally disappearing at T∼40 K. The EB properties have been studied in conjunction with results on the thermal dependence of the magnetic coercivity, zero-field-cooled and field-cooled magnetization and thermoremanence. The different Fe content strongly affects the magnetothermal properties, featuring superparamagnetic relaxation in the diluted sample and a reentrant ferromagnet-type transition in the concentrated one. Hence, the EB properties of the two samples have been discussed in consideration of such peculiarities of the magnetic behavior and highlighting the role of the Mn matrix.  相似文献   

15.
Polycrystalline samples of a new rare-earth series RPd5Al2 crystallizing in the tetragonal ZrNi2Al5-type structure have been prepared. Their physical properties by electrical resistivity ρ, magnetic susceptibility χ, magnetization M and specific heat Cp measurements are reported. The ingots are composed of elongated grains preferentially aligned in the c direction; therefore, measurements were conducted parallel and perpendicular to the grains. Antiferromagnetic ordering appears in R=Ce, Nd, Gd, and Sm at low temperatures. CePd5Al2 has two AFM transitions at 4.1 and 2.9 K and ρ(T) indicates a Kondo metal behavior with large anisotropy. In PrPd5Al2 no magnetic transition was observed down to 0.4 K. The Cp(T) shows a broad peak around 13 K due to the CEF effect, suggesting a non-magnetic singlet ground state. In NdPd5Al2, χ(T) shows anisotropy and the Cp(T) shows a sharp peak at 1.2 K. The magnetic entropy at 3 K is very close to Rln2, indicating a Kramers doublet ground state. In SmPd5Al2, Cp(T) shows a magnetic transition at 1.7 K. Cp(T) for GdPd5Al2 shows a peak at 6 K, followed by a broad anomaly around 3 K. Within this series, TN's for CePd5Al2 and NdPd5Al2 clearly deviate from the relation predicted by de Gennes scaling, which is ascribed to the CEF effect.  相似文献   

16.
Measurements of magnetic susceptibility χ, in the temperature range from 2 to 300 K, and of magnetization M vs. applied magnetic field B, up to 5 T, at various temperatures were made on polycrystalline samples of the Mn2GeTe4 compound. It was found that Mn2GeTe4 has a Néel temperature TN of about 135 K, shows mainly antiferromagnetic behavior with a very weak superimposed ferromagnetic component that is attributed to spin canting. Also, the magnetic results suggest that a possible spin-glass transition takes place at Tf≈45 K. The spin-glass order parameter q(T), determined from the susceptibility data, was found to be in agreement with the prediction of conventional spin-glass theory. The M vs. B results indicated that bound magnetic polarons (BMPs) occur in the compound, and that the effects from BMPs disappear at approximately 80 K. The M vs. B curves were well fitted by a Langevin type of equation, and the variation of the fitting parameters determined as a function of temperature. Using a simple spherical model, the radius of the BMP in the material was found to be about 27 Å; this value is similar to the effective Bohr radius for an acceptor in the II-IV-V2 and I-III-VI2 ternary semiconductor compounds.  相似文献   

17.
The magnetic properties of the PrPd2Ge2 and NdPd2Ge2 compounds have been investigated by magnetic measurements, specific heat measurements and neutron diffraction experiments. The PrPd2Ge2 compound orders antiferromagnetically below TN=5.0(2) with an original modulated magnetic structure characterized by a magnetic cell three times larger than the chemical one by tripling of the c parameter. The palladium atom is non magnetic and the Pr moments are parallel to the c-axis with a value of ≈2.0 μB at 2 K. The specific heat measurements clearly detect a low temperature transition for the NdPd2Ge2 compound, interpreted as a Nd sublattice antiferromagnetic ordering below 1.3(2) K.  相似文献   

18.
We measured the heat capacity of CeIrSi3 (100 mK<T<6 K) under high pressure up to P=1.38 GPa. The measurements have been used a quasiadiabatic method utilizing a CuBe piston-cylinder pressure cell in a dilution refrigerator. At 0 GPa, a sharp anomaly which indicates the antiferromagnetically transition is observed at TN=5 K. TN decreases monotonically with increasing pressure up to P=1.38 GPa. The magnetic entropy is released below TN only 19% of R ln 2 at 0 GPa. And the magnetic entropy decreases with increasing pressure up to 1.38 GPa, 64% compared to that at 0 GPa.  相似文献   

19.
The magnetic properties of the intermetallic compound Dy2CuIn3 have been investigated. Ac and dc-susceptibility measurements indicate an onset of antiferromagnetic ordering at TN=19.5 K and an additional frequency dependent transition at Tds∼9 K. Neutron diffraction studies confirm the ordered transition at 19.5±1 K. The magnetic unit cell can be described by the propagation vector k=(0.25,0.25,0) with the magnetic moment μ=2.63(4)μB/Dy3+ parallel to the c-axis. Nevertheless, neutron diffraction reveals no additional magnetic phase transition around or below 9 K, which suggests that, at lower temperatures, a spin glass state may be formed in coexistence with the antiferromagnetic mode as a result of frustration and the antagonism between ferromagnetic and antiferromagnetic exchange interactions.  相似文献   

20.
Nanosized manganese oxide particles were prepared by the so-called polyol process. The average diameter of the particles was controlled by the growth time. X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photon spectroscopy (XPS) show that the particles are well crystallized, pure, stoichiometric Mn3O4 single crystals of uniform size ranging from about 5 to 12 nm. The variation of their dc-magnetization, M, as a function of the magnetic field, H, and temperature, T, clearly corresponds to ferromagnetic ordering at low temperature, with a Curie temperature slightly higher than 40 K. The evidence for superparamagnetism in these particles, due to their very small size, has been discussed in the light of their M(H) and M(T) for zero-field-cooled (ZFC) and field-cooled (FC) plots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号