共查询到20条相似文献,搜索用时 0 毫秒
1.
Structure, magnetic and transport properties of polycrystalline Bi0.6−xPrxCa0.4MnO3 (x=0.0, 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6) have been studied. Systematic substitution of Pr at Bi site induces an interesting interplay between the charge ordering and antiferromagnetism. The charge ordering temperature (TCO) decreases with increasing x. The antiferromagnetic (AFM) ordering temperature (TN) increases sharply at both the extremes but remains nearly constant from x=0.2 to 0.4. At temperatures lower than TN a transition to the glassy state is observed. The nature of this glass like state appears to be controlled by the Pr content, and at lower values of x this is akin to a spin glass, while at higher x it has a characteristic of cluster glass. The Pr doping also leads to enhancement in the magnetic moment. In the present work it has been proposed that the local lattice distortion induced due to size mismatch between the A-site cations and 6s2 character of Bi3+ lone pair electron is responsible for the observed magnetic and electrical properties. 相似文献
2.
A systematic investigation of electrical, magnetic and elastic properties was undertaken in nano and microcrystalline Nd0.67Ca0.33MnO3 manganite, mainly to understand the charge ordering phenomenon. There is a clear and distinct behaviour in the electrical and magnetic properties of nano and microcrystalline samples and the observed behaviour is explained. 相似文献
3.
D. Varshney I. Mansuri N. Kaurav W.Q. Lung Y.K. Kuo 《Journal of magnetism and magnetic materials》2012
The effect of Ce-doping on structural, magnetic, electrical and thermal transport properties in hole-doped manganites La0.7−xCexCa0.3MnO3 (0.0≤x≤0.7) is investigated. The structure of the compounds was found to be crystallized into orthorhombically distorted perovskite structure. dc Susceptibility versus temperature curves reveal various magnetic transitions. For x≤0.3, ferromagnetic regions (FM) were identified and the magnetic transition temperature (TC) was found to be decreasing systematically with increasing Ce concentration. The electrical resistivity ρ(T) separates the well-define metal-semiconducting transition (TMS) for low Ce doping concentrations (0.0≤x≤0.3) consistent with magnetic transitions. For the samples with 0.4≤x≤0.7, ρ(T) curves display a semiconducting behavior in both the high temperature paramagnetic (PM) phase and low temperature FM or antiferromagnetic phase. The electron–phonon and electron–electron scattering processes govern the low temperature metallic behavior, whereas small polaron hopping model is found to be operative in PM phases for all samples. These results were broadly corroborated by thermal transport measurements for metallic samples (x≤0.3) in entire temperature range we investigated. The complicated temperature dependence of Seebeck coefficient (S) is an indication of electron–magnon scattering in the low temperature magnetically ordered regime. Specific heat measurements depict a broadened hump in the vicinity of TC, indicating the existence of magnetic ordering and magnetic inhomogeneity in the samples. The observation of a significant difference between ρ(T) and S(T) activation energies and a positive slope in thermal conductivity κ(T) implying that the conduction of charge carriers were dominated by small polaron in PM state of these manganites. 相似文献
4.
B.M Nagabhushana R.P. Sreekanth Chakradhar C. Shivakumara 《Solid State Communications》2005,136(7):427-432
Nanocrystalline La1−xBaxMnO3 (0.0≤x≤0.3) manganites have been prepared by a simple and instantaneous solution combustion method, which is a low temperature initiated synthetic route to obtain fine-grained powders with relatively high surface area. The phase purity and crystal structure of the combustion products are carried out by powder X-ray diffraction. The as-made nanopowders are in cubic phase. On calcination to 900 °C, barium doped manganites retain cubic phase, whereas barium free manganite transformed to rhombohedral phase. The scanning electron microscope (SEM) results revealed that the combustion-derived compounds are agglomerated with fine primary particles. The doped manganites have surface area in the range 24-44 m2/g. The surface area of the manganites increases with barium content, whereas it decreases on calcination. Both undoped and doped lanthanum manganites show two active IR vibrational modes at 400 and 600 cm−1. The low temperature resistivity measurements have been carried out by four-probe method down to 77 K. All the samples exhibit metal-insulator behaviour and metal-insulator transition temperature (TM-I) in the range 184-228 K and it is interesting to note that, as the barium content increases the TM-I shifts to lower temperature side. The maximum TM-I of 228 K is observed for La0.9Ba0.1MnO3 sample. 相似文献
5.
A.M. AlievA.G. Gamzatov A.B. BatdalovA.S. Mankevich I.E. Korsakov 《Physica B: Condensed Matter》2011,406(4):885-889
A technology of obtaining the single-phase ceramic samples of La1−xKxMnO3 manganites and the dependence of their structural parameters on the content of potassium has been described. Magnetocaloric effect (MCE) in the obtained samples has been measured by two independent methods: classical direct methodic and a method of magnetic field modulation. The values of MCE obtained by both methods substantially differ. The explanation of the observed divergences is given. The correlation between the level of doping and MCE value has been defined. The value of TC determined by the MCE maximum conforms with the literature data obtained by other methods. 相似文献
6.
Low temperature sample stage in transmission electron microscope is used to investigate the charge ordering behaviours in Bi0.4Ca0.6MnO3 film with a thickness of 110 nm at 103 K. Six different types of superlattice structures are observed using selected-area electron diffraction (SAED) technique, while three of them match well with the modulation stripes in high-resolution transmission electron microscopy (HRTEM) images. It is found that the modulation periodicity and direction are completely different in the region close to the Bi0.4Ca0.6MnO3/SrTiO3 interface from those in the region a little far from the Bi0.4Ca0.6MnO3/SrTiO3 interface, and the possible reasons are discussed. Based on the experimental results, structural models are proposed for these localized modulated structures. 相似文献
7.
The effect of Te-doping at La-site on structural, magnetic and transport properties in the manganites La0.7Ca0.3−xTexMnO3 (0≤x≤0.15) has been investigated. All samples show an orthorhombic structure (O′-Pbnm) at room temperature. It shows that the Mn-O-Mn bond angle decreases and the Mn-O bond length increases with the increase in the Te content. All samples exhibit an insulator-metal (I-M) transition and the resistivity increases with the increase in the Te-doping level. Additionally, the Curie temperature Tc decreases and the transition becomes broader with increasing Te-doping level, in contrast, the magnetization of Te-doping samples at low temperatures decrease with increasing x as x≤0.10 and then increase with further increasing x to 0.15. The results are discussed in terms of Jahn-Teller (JT) vibrational anisotropy Q3/Q2 and the opening of the new DE channel between Mn2+-O-Mn3+ due to the introduction of Mn2+ ions because of the substitution of Te4+ ions for Ca2+ ions. 相似文献
8.
The magnetic and transport properties of La1−xCaxMnO3 (0≤x<0.4) have been systematically studied. The magnetoresistance (MR) maximum appears at x=0.2-0.25 and the temperature dependence of MR for x>0.25 shows a much broader profile than that of samples for x=0.2-0.25. Based on a scenario in which there is a short-range charge ordering (CO) state coexisting in the ferromagnetic state matrix for x>0.25, and the least or even no short-range CO state exists in samples for x=0.2-0.25, the above observations can be understood. 相似文献
9.
S.K. BarikC. Krishnamoorthi R. Mahendiran 《Journal of magnetism and magnetic materials》2011,323(7):1015-1021
We have studied the effect of Fe substitution on magnetic and magnetocaloric properties in La0.7Sr0.3Mn1−xFexO3 (x=0.05, 0.07, 0.10, 0.15, and 0.20) over a wide temperature range (T=10-400 K). It is shown that substitution by Fe gradually decreases the ferromagnetic Curie temperature (TC) and saturation magnetization up to x=0.15 but a dramatic change occurs for x=0.2. The x=0.2 sample can be considered as a phase separated compound in which both short-range ordered ferromagnetic and antiferromagnetic phases coexist. The magnetic entropy change (−ΔSm) was estimated from isothermal magnetization curves and it decreases with increase of Fe content from 4.4 J kg−1 K−1 at 343 K (x=0.05) to 1.3 J kg−1 K−1 at 105 K (x=0.2), under ΔH=5 T. The La0.7Sr0.3Mn0.93Fe0.07O3 sample shows negligible hysteresis loss, operating temperature range over 60 K around room temperature with refrigerant capacity of 225 J kg−1, and magnetic entropy of 4 J kg−1 K−1 which will be an interesting compound for application in room temperature refrigeration. 相似文献
10.
T.D. ThanhL.H. Nguyen D.H. ManhN.V. Chien P.T. Phong N.V. KhiemL.V. Hong N.X. Phuc 《Physica B: Condensed Matter》2012,407(1):145-152
A systematic investigation of the structural, magnetic and electrical properties of a series of nanocrystalline La0.7SrxCa0.3−xMnO3 materials, prepared by high energy ball milling method and then annealed at 900 °C has been undertaken. The analysis of the XRD data using the Win-metric software shows an increase in the unit cell volume with increasing Sr ion concentration. The La0.7SrxCa0.3−xMnO3 compounds undergo a structural orthorhombic-to-monoclinic transition at x=0.15. Electric and magnetic measurements show that both the Curie temperature and the insulator-to-metal transition temperature increase from 259 K and 253 K correspondingly for La0.7Ca0.3MnO3 (x=0) to 353 K and 282 K, respectively, for La0.7Sr0.3MnO3 (x=0.3). It is argued that the larger radius of Sr2+ ion than that of Ca2+ is the reason to strengthen the double-exchange interaction and to give rise to the observed increase of transition temperatures. Using the phenomenological equation for conductivity under a percolation approach, which depends on the phase segregation of ferromagnetic metallic clusters and paramagnetic insulating regions, we fitted the resistivity versus temperature data measured in the range of 50-320 K and found that the activation barrier decreased with the raising Sr2+ ion concentration. 相似文献
11.
The magnetic and magnetocaloric properties of polycrystalline La0.70(Ca0.30−xSrx)MnO3:Ag 10% manganite have been investigated. All compositions are crystallized in single phase orthorhombic Pbnm space group. Both, the insulator–metal transition temperature (TIM) and Curie temperature (Tc) are observed at 298 K for x=0.10 composition. Though both TIM and Tc are nearly unchanged with Ag addition, the MR is increased. The MR at 300 K is found to be as large as 31% with magnetic field change of 1 T, whereas it reaches up to 49% at magnetic field of 3 T for the La0.70Ca0.20Sr0.10MnO3:Ag0.10 sample. The maximum entropy change (ΔSMmax) at near its Tc (300.5 K) is 7.6 J kg−1 K−1 upon the magnetic field change of 5 T. The La0.70Ca0.20Sr0.10MnO3:Ag0.10 sample having good MR (31%1 T, 49%3 T) and reasonable change in magnetic entropy (7.6 J kg−1.K−1, 5 T) at 300 K can be a potential magnetic refrigerant material at ambient temperatures. 相似文献
12.
Z.Q. Li D.X. Zhang X.H. Zhang Y.Q. Gao X.J. Liu E.Y. Jiang 《Physics letters. A》2007,370(5-6):512-516
The charge ordering characteristics in Y0.5Ca0.5MnO3 manganite, prepared by sol–gel process, have been investigated experimentally. It is found that the superlattice diffractions appear in the electron diffraction patterns recorded at low temperatures, while only basic Brag diffraction spots can be observed when temperature is higher than 300 K. This provides direct evidence for the existence of charge ordering in Y0.5Ca0.5MnO3. The magnetization and specific heat measurements indicate the charge ordering temperature of Y0.5Ca0.5MnO3 is 290 K, around which both the magnetization and specific heat reveal anomalous behaviors. We also observed that the MnO bond length changed remarkably and the effective number of carriers reduced prominently with decreasing temperature around charge ordering temperature through transform infrared spectra measurements. 相似文献
13.
The effect of Gd-doping on the charge ordering (CO) state in perovskite-type manganates Bi0.3−xGdxCa0.7MnO3 with x=0, 0.02, 0.05, 0.1, 0.3 has been investigated by transport and magnetic property measurements. It is found that CO temperature (TCO) and antiferromagnetic (AFM) ordering temperature TN occurring below TCO decrease obviously with increasing Gd-doping level. Accompanying the variation of TCO, the increased magnetization and the decreased resistivity are observed. In addition, the increased magnetic inhomogeneity has been also observed in the samples based on the difference between the zero-field-cooling (ZFC) magnetization MZFC and field-cooling (FC) magnetization MFC, which is ascribed to the competition between ferromagnetic (FM) phase induced by Gd-doping and CO AFM phase. The experimental results indicate that the Bi3+ lone pair electron with 6s2 character plays a dominating role on the CO state of Bi0.3Ca0.7MnO3. 相似文献
14.
P.R. Sagdeo 《Solid State Communications》2006,137(3):158-161
Temperature dependent electron diffraction of La1−xCaxMnO3 for 0.55≤x≤0.67 using transmission electron microscope (TEM) has been carried out in the temperature range of 106-300 K to study the melting of charge-ordering across the transition temperature. Clear signature of charge-ordering as evident by the presence of diffuse super-lattice spots persist even at room temperature. This has been consistently observed for four different samples with compositions within the range of 0.55≤x≤0.67. The results indicate emergence of some degree of itinerancy in the localized charge carriers as temperature rises. 相似文献
15.
J.J. GeX.B. Xue G.F. ChengM. Yang B. YouW. Zhang X.S. WuA. Hu J. Du S.J. ZhangS.M. Zhou Z. WangB. Yang L. Sun 《Journal of magnetism and magnetic materials》2012,324(2):200-204
Systematic studies of crystalline structure, magnetic and ferroelectric properties have been performed on polycrystalline Bi0.8La0.2−xPbxFeO3 ceramic samples, in which x changes continuously from 0 to 0.2. Rietveld refinement of the x-ray diffraction (XRD) patterns shows that the compound crystal structure changes gradually from pseudotetragonal to pseudocubic with increasing Pb concentration. Coupled with the structural and compositional changes, magnetic ordering of the samples exhibits significantly non-monotonical variation corresponding to x. The compound remnant magnetization (Mr) and coercivity (Hc) both reach minimum values close to zero at x=0.07. This variation of magnetic property in co-doped samples can be attributed to the extent of suppression of cycloid spin structure in original BiFeO3 with changing x. Unlike magnetic responses, the ferroelectric measurements show that the compounds have monotonical change in the remnant electric dipole polarization (Pr). 相似文献
16.
The magnetic properties and the Griffiths singularity were investigated in Mn-site doped manganites of La0.45Sr0.55Mn1−xCoxO3 (x=0, 0.05, 0.10 and 0.15) in this work. The parent sample La0.45Sr0.55MnO3 undergoes a paramagnetic-ferromagnetic transition at TC=290 K and a ferromagnetic-antiferromagnetic transition at TN=191 K. The doping of Co ions enhances the ferromagnetism and suppresses the antiferromagnetism. The enhanced ferromagnetism results from the fact that the Co doping enhances the Mn3+-Mn4+ double-exchange interaction and induces the Co2+-Mn4+ ferromagnetic superexchange interaction. Detailed investigation on the magnetic behavior above TC exhibits that the Griffiths singularity takes place in this series of Mn-site doped compounds. The correlated disorder induced by the Co ionic doping, together with the phase competition from the ferromagnetic and the antiferromagnetic interactions among Mn ions, is responsible for the Griffiths singularity. 相似文献
17.
The effect of Te-doping at La-site on structural, magnetic and transport properties in the manganites La0.7Sr0.3−xTexMnO3 (0≤x≤0.15) has been investigated. All samples show a rhombohedral structure with the space group . It shows that the Mn-O-Mn bond angle decreases and the Mn-O bond length increases with the increase of Te content. The Curie temperature TC decreases with increasing Te-doping level, in contrast, the magnetization magnitude of Te-doping samples at low temperatures increase with increasing x as x≤0.05 and then decrease with further increasing x to 0.15. The results are discussed in terms of the combined effects of the opening of the new double exchange (DE) channel between Mn2+-O-Mn3+ due to the introduction of Mn2+ ions because of the substitution of Te4+ for Sr2+ and the reduction of the transfer integral b due to the decrease of the Mn-O-Mn bond angle. 相似文献
18.
R.P. Pant Manju Arora Balwinder Kaur Vinod Kumar Ashok Kumar 《Journal of magnetism and magnetic materials》2010,322(22):3688-3691
Nanoparticles of CoGdxFe2−xO4 (where x=0.0, 0.1, 0.3, 0.5) series have been prepared by chemical co-precipitation. The effect of Gd3+ ion concentration on crystalline phase, crystallinity, crystallite size, molecular vibrations and magnetic resonance has been investigated in detail. The crystallinity decreases with an increase in Gd3+ ion concentration and changes the structural parameters. The spin lattice relaxation has been correlated with the doping ion concentration. Similarly, the superparamagnetic behavior of these particles has been observed with EPR spectroscopy. 相似文献
19.
M. Staruch F. Ronning Q.X. Jia H. Wang 《Journal of magnetism and magnetic materials》2010,322(18):2708-6451
Epitaxial Pr0.5Ca0.5MnO3 films have been synthesized on (0 0 1) SrTiO3 substrate using a chemical solution deposition technique and two-step post-annealing process. The zero field resistivity of the films shows semiconducting behavior and a characteristic of charge ordering is observed at 230 K. The resistivity of the 10 nm film did not show any effect with the magnetic field. However, melting of charge ordering was observed for the 120 nm film at an applied magnetic field of 4 T. Large decrease in the resistivity of the 120 nm film (<100 K) resulted in magnetoresistance of nearly −100% at 75 K. 相似文献
20.
Magnetoresistance (MR) and magnetization (dc and ac) measurements have been carried out on the manganites, (La0.7−2xEux)(Ca0.3Srx)MnO3 (0.05≤x≤0.15), in the temperature range of 5-320 K. At 5 K, an unusually large MR of almost 98% is observed in the x=0.15 sample, nearly up to fields of 4-5 T. This large high-field MR occurs in the metallic region, far below the insulator-metal transition temperature, and does not vary linearly with applied field. The unusual magnetoresistance is explained in the light of various possibilities such as phase segregation, cluster spin-glass behavior, etc. 相似文献