首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Magnetite particles with different average diameter (Dm) suitable for magnetic fluid hyperthermia (MFH) were synthesized by controlled coprecipitation technique. In this method, the reaction pH was stabilized using the pH buffer and the average particle diameter decreased with increasing reaction pH. The size-dependent magnetic behavior of the magnetite nanoparticles was studied and the optimum size range required for magnetic fluid hyperthermia (MFH) has been arrived at. Among the samples studied, the maximum specific absorption rate of 15.7 W/g was recorded for the magnetite sample with Dm of 13 nm, when exposed to an AC magnetic field strength of 3.2 kA/m and a frequency of 600 kHz. The AC magnetic properties suggested that the size distribution of the sample was bimodal with average particle size less than ∼13 nm.  相似文献   

2.
Magnetic after-effects in vacancy-doped magnetite at room temperature are considered on the basis of a statistical thermodynamic treatment. In this paper we study the kinetics of a very small vacancy concentration distributed on the four non-equivalent octahedral sites of the inverse spinel structure. It is to be noted that satisfactory agreement is found between recent experimental results and the theoretical model.  相似文献   

3.
The relative contributions of Néel and Brownian relaxations on magnetic heat dissipation were studied by investigating the physical, magnetic and heating characteristics of magnetite nanoparticle suspensions with average diameters of 12.5 and 15.7 nm. Heating characteristics depended on the dispersion states of particles. The specific absorption rates (SAR) dropped by 27% for the 12.5 nm particles to 16.8×10−9 W g−1 Oe−2 Hz−1 and by 67% for the 15.7 nm particles to 9.69×10−9 W g−1 Oe−2 Hz−1, when the particle rotation was suppressed by dispersing magnetite nanoparticles in hydro-gel.  相似文献   

4.
An aqueous magnetic suspension was prepared by dispersing amphiphilic co-polymer-coated monodispersed magnetite nanoparticles synthesized through thermal decomposition of iron acetylacetonate (Fe(acac)3) in a mixture of oleic acid and oleylamine. The average diameter of narrow-size-distributed magnetite nanoparticles varied between 5 and 12 nm depending on the experimental parameters such as reaction temperature, metal salt concentration and oleic acid/oleylamine ratio. Though the as-synthesized particles were coated with oleate and were dispersible in organic solvent, their surfaces were modified using amphiphilic co-polymers composed of poly(maleic anhydride-alt-1-octadecene) and polyethylene glycol-methyl ether and made dispersible in water. Infrared spectra of the sample indicated the existence of −COOH groups on the surface for further conjugation with biomolecules for targeted cancer therapy.  相似文献   

5.
Magnetite nanoparticles (Chemicell SiMAG-TCL) were characterized by SQUID-relaxometry, susceptometry, and TEM. The magnetization detected by SQUID-relaxometry was 0.33% of that detected by susceptometry, indicating that the sensitivity of SQUID-relaxometry could be significantly increased through improved control of nanoparticle size. The relaxometry data were analyzed by the moment superposition model (MSM) to determine the distribution of nanoparticle moments. Analysis of the binding of CD34-conjugated nanoparticles to U937 leukemia cells revealed 60,000 nanoparticles per cell, which were collected from whole blood using a prototype magnetic biopsy needle, with a capture efficiency of >65% from a 750 μl sample volume in 1 min.  相似文献   

6.
The powder metallurgy technique has been exploited as a means to prepare porous magnetocaloric materials. The alloy Mn1.1Fe0.9P0.46As0.54 was previously synthesized by mechanical alloying followed by a solid-state reaction for crystallization and homogenization. Subsequently, the alloy was comminuted and sintered at 1298 K. The obtained sintered product is aimed to be tested in a magnetic regenerator of a prototype machine.  相似文献   

7.
We investigated electrical- and magneto-resistance control in magnetite (Fe3O4) nanoparticle sinter (MNPS) by the regulation of heat treatment (HT) temperature. MNPS was produced from hematite (α-Fe2O3) nanoparticles (HNP’s) using a deoxidization reaction. The average size of HNP was 30 nm, and HT was carried out between 400 and 800 °C. X-ray diffraction, magnetization, electrical resistivity (ER), and magneto-resistivity (MR) measurements were performed at temperatures ranging from 5 to 300 K. The ER and MR behaviors were considerably different at HT temperatures above and below ∼600 °C. After HT below ∼600 °C, ER followed the Mott-type variable-range-hopping conduction, and MR showed large values over a wide temperature range. After HT above ∼600 °C, ER indicated a Verwey transition near 110 K and MR showed small values, except in the vicinity of the Verwey transition temperature. Changing the HT temperature altered the coupling between adjacent magnetite nanoparticles (MNPs) and affected the crystallinity of MNPS. Below ∼600 °C, ER and MR were dominated by grain-boundary conduction, while above ∼600 °C they were determined by inter-grain conduction. The application of a magnetic field to the grain-boundary region, which had random localized spins, caused a large enhancement in MR.  相似文献   

8.
Commercial nanoparticles supplied by Chemicell, Micromod and Bayer-Schering were characterised with regard to their nanocrystalline diameter, hydrodynamic diameter, total iron content and relative ferrous iron content. Additionally, calorimetric measurements were taken using a 900 kHz AC magnetic field of amplitude 5.66 kA/m. It was found that those samples containing relatively high (>18%) ferrous content generated a substantially smaller (12% on average) intrinsic loss power (ILP) than those samples with a lower ferrous content. Two nominally identical Chemicell samples that differed only in their production date showed significantly different ILPs, attributed to a variation in batch-to-batch crystallite sizes. The highest ILP values in the cohort, ca. 3.1 nHm2/kg, were achieved for particles with hydrodynamic diameters of ca. 70 nm and nanocrystalline diameters of ca. 12 nm. These compare favourably with most samples prepared in academic laboratories, although they are not as high as the ca. 23.4 nHm2/kg reported for naturally occurring bacterial magnetosomes.  相似文献   

9.
Fe3O4 magnetic nanoparticles were prepared by co-precipitation from FeSO4·7H2O and FeCl3·6H2O aqueous solutions using NaOH as precipitating reagent. The nanoparticles have an average size of 12 nm and exhibit superparamagnetism at room temperature. The nanoparticles were used to prepare a water-based magnetic fluid using oleic acid and Tween 80 as surfactants. The stability and magnetic properties of the magnetic fluid were characterized by Gouy magnetic balance. The experimental results imply that the hydrophilic block of Tween 80 can make the Fe3O4 nanoparticles suspending in water stable even after dilution and autoclaving. The magnetic fluid demonstrates excellent stability and fast magneto-temperature response, which can be used both in magnetic resonance imaging and magnetic fluid hyperthermia.  相似文献   

10.
Using the thermal decomposition of organometallics method we have synthesized high-quality, iron oxide nanoparticles of tailorable size up to ∼15 nm and transferred them to a water phase by coating with a biocompatible polymer. The magnetic behavior of these particles was measured and fit to a log-normal distribution using the Chantrell method and their polydispersity was confirmed to be very narrow. By performing calorimetry measurements with these monodisperse particles we have unambiguously demonstrated, for the first time, that at a given frequency, heating rates of superparamagnetic particles are dependent on particle size, in agreement with earlier theoretical predictions.  相似文献   

11.
We report a study to develop a magnetic system for local delivery of amoxicillin. Magnetite microparticles produced by coprecipitation were coated with a solution of amoxicillin and Eudragit®S100 by spray drying. Scanning electron microscopy, optical microscopy, X-ray powder diffraction and vibrating sample magnetometry revealed that the particles were superparamagnetic, with an average diameter of 17.2 μm, and an initial susceptibility controllable by the magnetite content in the suspension feeding the sprayer. Our results suggest a possible way to treat Helicobacter pylori infections, using an oral drug delivery system, and open prospects to coat magnetic microparticles by spray drying for biomedical applications.  相似文献   

12.
The present study reports the room temperature ferromagnetism in undoped ZnO thin films grown by PVD method. The 500 nm film with small (90 nm) ZnO grains possess isolated magnetic domains with coercivity of 520 Oe. However, long range magnetic ordering with smaller coercivity of 230 Oe is observed for 1000 nm film. The long range ordering is caused by the reduction in domain wall pinning effect due to the presence of bigger (270 nm) ZnO grains. PL measurements show that these grains are semiconducting in nature. Results presented here suggest that oxygen vacancies at the surface may be responsible for the observed ferromagnetism.  相似文献   

13.
In this work, an economical, surfactant-free and scalable solution synthesis method at room temperature for self-decorated copper selenide (Cu2-xSe) nanosheets is reported. Structural and morphological characterizations clearly revealed the formation of single cubic phase Cu2-xSe nanosheets in nearly stoichiometric ratio. The tentative mechanism for fabrication of self-decorated Cu2-xSe nanosheets was proposed. Furthermore, nanostructured bulk Cu2-xSe by hot pressing was explored for thermoelectric performance. High electrical conductivity (1.1 × 105 S/m), moderate Seebeck coefficient (87 μV/K) and low thermal conductivity (1.11 W/mK) at 753 K were obtained. The figure of merit (ZT) ~ 0.56 and power factor (PF) ~ 860 μW/mK2 at 753 K showed better performance than some reported Cu2-xSe nanostructured or bulk counterparts under same temperature. Also, theoretically device ZT ~0.16 and efficiency up to 3% could be achieved. The results indicate that this green and novel synthesis process is an alternative to other reported time or energy consuming processes.  相似文献   

14.
We report the results of growth kinetics of oxidation process on niobium thin film surfaces exposed to air at room temperature by using a surface sensitive non-destructive X-ray reflectivity technique. The oxidation process follows a modified Cabrera-Mott model of thin films. We have shown that the oxide growth is limited by the internal field due to the contact potential which develops during the initial stage of oxidation. The calculated contact potential for 100 and 230 Å thick films is 0.81 ± 0.14 and 1.20 ± 0.11 V respectively. We report that 40% increase in the contact potential increases the growth rate for the first few mono layers of Nb2O5 from ∼2.18 to ∼2790 Å/s. The growth rates of oxidation on these samples become similar after the oxide thicknesses of ∼25 Å are reached. We report on the basis of our studies that a protective layer should be grown in situ to avoid oxidation of Nb thin film surface of Nb/Cu cavities.  相似文献   

15.
For a variety of magnetically based biomedical applications, it is advantageous to use sedimentation stable suspensions of relatively large (d>20 nm) magnetic core-shell nanoparticles. Water-based suspensions of multicore nanoparticles were prepared by coating of the particles (synthesized by means of a modified alkaline precipitation method) with a carboxymethyldextran shell. The resulting ferrofluids were structurally and magnetically characterized. It was found that these fluids show a specific heating power of about 60 W/g (f=400 kHz, H=10 kA/m). This value was increased up to 330 W/g by a simple fractionation method based on centrifugation. Finally, the cellular uptake of the multicore nanoparticles was demonstrated.  相似文献   

16.
Copper molybdate nanoplates were synthesized by a sonochemical process at room temperature, which we report as a simple and cost-effective route. Structural analysis of the material by the Rietveld method of X-ray diffraction (XRD) data revealed lindgrenite Cu3(MoO4)2(OH)2 in a single-phase structure. All the vibrational modes characteristic of the space group were identified by Raman vibrational and near-infrared (NIR) spectroscopies. The profile obtained for N2 adsorption/desorption was type III hysteresis, characteristic of mesoporous materials, with a surface area of 70.77(1) m2 g−1. The micrographs of the material obtained by scanning electron microscopy showed nanoplates with nanometric sizes and an anisotropic growth aspect. The catalytic activity of lindgrenite was evaluated by esterifying oleic acid with methanol, showing high conversion rate to methyl oleate and good catalyst stability after seven recycling cycles. Above all, the best catalytic performance was reached when we optimized parameters such as oleic acid:methanol molar ratio of 1:5, 5% of catalyst dosage, and reaction time of 5 h, resulting in 98.38% of conversion at 413 K. Therefore, sonochemically synthesized lindgrenite proved to be a high potential material for biofuel production by oleic acid esterification.  相似文献   

17.
采用分子动力学方法和F-S多体势函数,模拟研究纳米铜团簇常温下能量特征及其在升温直到熔化过程中的变化,确定了常温下纳米铜团簇的表面原子厚度和表面能,给出在不同温度下纳米铜团簇能量大小分布比例和能量的概率密度,细致描述了团簇升温过程团簇内部原子和表面原子之间不同的变化特征. 关键词: 铜团簇 分子动力学 能量特征 温度  相似文献   

18.
There has been much recent interest in extending the technique of magnetic resonance imaging (MRI) down to the level of single spins with sub-optical wavelength resolution. However, the signal to noise ratio for images of individual spins is usually low and this necessitates long acquisition times and low temperatures to achieve high resolution. An exception to this is the nitrogen-vacancy (NV) color center in diamond whose spin state can be detected optically at room temperature. Here we apply MRI to magnetically equivalent NV spins and demonstrate fully resolved spectra with resolution well below the optical wavelength of the readout light. In addition, using a microwave version of MRI we achieved a resolution that is 1/270 in size of the coplanar striplines, which define the effective wavelength of the microwaves that were used to excite the transition. This technique can eventually be extended to imaging of large numbers of NVs in a confocal spot and possibly to image nearby dark spins via their mutual magnetic interaction with the NV spin.  相似文献   

19.
Thick crystalline zirconium oxide films were synthesized on Zircaloy-4 substrates by anodic oxidation at room temperature in NaOH solution with a stable applied voltage (300 V). The film is approximately 4.7 μm in thickness. The XPS and SEM analysis shows that the film is a three-layer structure in water, hydroxide and oxide parts. The thickness of that order is ∼0.01 μm, ∼1 μm, ∼3.7 μm, respectively. The oxide layer is composed of tetragonal and monoclinic phases with the volume ratio about 0.2. Furthermore, the thick anodic film acts as a barrier to oxygen and zirconium migrations. It effectively protects zirconium alloys against the worse corrosion. An extremely low passive current density of ∼0.018 μA/cm2 and a low oxidation weight gain of ∼0.411 mg/cm2 were also observed in the films.  相似文献   

20.
ZnO based magnetic semiconductors (MSs) are prominent candidates for the spintronic devices because of their high Curie temperatures and low conductance mismatches. In this paper the spin-polarized transport in MS/nonmagnetic semiconductor (NMS) p–n junction is investigated. A model is established based on semiconductor drift–diffusion theory and continuity equation. Boundary conditions are obtained from the quasi-chemical potential (QCP) relations at the junction interface. For a ZnO based magnetic p–n junction, we calculate the distributions of carrier/spin density and spin polarization at room temperature. It is demonstrated that by choosing proper parameters, effective spin-polarized injection from ZnO based MS into ZnO can be achieved at room temperature without external spin-polarized injection (ESPI) or large bias.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号