首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The angular dependence of the coercivity and remanence of ordered hexagonal arrays of Co nanowires prepared using anodic aluminum oxide templates was investigated. The experimental evolution of coercivity as a function of the angle, in which the external field is applied, is interpreted considering micromagnetic simulations. Depending on the angle between the axis of the wire and the applied magnetic field direction our results show that the magnetization reversal mode changes from vortex to a transverse domain wall. Besides, we observed that the dipolar interactions cause a reduction in coercive fields, mainly in the direction of easy magnetization of the nanowires. Good agreement between numerical and experimental data is obtained.  相似文献   

2.
Perpendicular structured nanowire arrays interaction field distributions (IFDs), as revealed from first-order reversal curves (FORC) diagrams, are related to the presence of the demagnetizing field in the system. Despite the similarity between the geometric properties of bit patterned media and mentioned nanowire arrays, FORC diagrams of these two types of systems are not similar essentially due to the different number of magnetic entities influencing the switch of an individual element. We show that one Preisach–Krasnosel'skii–Pokrovskii (PKP) symmetrical hysteron can be representative of an ideal infinite nanowire array when the field is applied along the wires. Starting from this observation, we present a very simple model based on PKP symmetrical hysterons that can be applied to real finite ferromagnetic nanowire arrays, and is able to describe a wide class of experimentally observed FORC distributions, revealing features due to size effects. We also present IFDs modeled for different geometric characteristics such as array size, interwire distance, and nanowire dimensions, and an identification procedure for the proposed model.  相似文献   

3.
Using different electrolyte compositions and varying the off-time between pulses, Co1xZnx nanowire arrays were fabricated by ac pulse electrodeposition. The effect of deposition parameters on alloy contents was investigated by studying the microstructures and magnetic properties of as-deposited and annealed Co1xZnx nanowires. It is shown that Zn content in CoZn nanowires exponentially increases by increasing the zinc ions in the electrolyte. The Zn content initially increases to a maximum by increase in off-time between pulses and then falls off. Adding a certain amount of Zn to Co led to form amorphous CoZn nanowires. A significant increase in magnetization, coercivity and squareness of CoZn nanowires was observed after annealing. The rate of increase in magnetization of annealed samples was seen to be inversely proportional to their initial magnetization. Improvement of magnetic properties of annealed samples may be caused by magnetic cluster formation and pinning effect.  相似文献   

4.
CoCu nanowires were fabricated in anodic alumina templates by a simple metal displacement deposition method and the as-deposited samples were subsequently annealed at 400 °C in vacuum. The CoCu nanowires are 80 nm in diameter and 50 μm in length. The aspect ratio (ratio of length to diameter) is larger than 600, which results in distinctive magnetic anisotropy. Enhanced coercivity (about 2245 Oe) and large squareness of 92% have been observed in the annealed samples.  相似文献   

5.
BaFe12O19 nanowire arrays having single magnetic domain size (≤460 nm) in anodic aluminum oxide (AAO) templates were prepared by sol-gel and self-propagating high-temperature synthesis techniques. The diameter of the nanowire arrays is approximately 70 nm and the length is about 2-4 μm. The specimens were characterized using X-ray diffraction, vibrating sample magnetometer, field emission scan electron microscope, atomic force microscopy and microwave vector network analyzer. The magnetic properties of BaFe12O19 nanowire arrays embedded in AAO templates were measured by VSM with a field up to 1274 KA/m at room temperature. The results indicate that the nanowire arrays exhibit large saturation magnetization and high coercivity in the range of 6000 Oe and an obvious magnetic anisotropy with the easy magnetizing axis along the length of the nanowire arrays, probably due to the shape anisotropy and magneto-crystalline anisotropy. Finally the microwave absorption properties of the nanowires were discussed.  相似文献   

6.
Magnetic properties of the cubic nanowire, which consists of a ferromagnetic core of spin-1 and a ferromagnetic shell of spin-3/2 with ferrimagnetic interface coupling, are investigated by the use of the effective-field theory with correlations (EFT). Two compensation points have been found for certain values of the system parameters in the nanowire. In particular, the effects of the transverse field and the crystal field on the magnetization and phase transition are described in detail.  相似文献   

7.
Organic/inorganic hybrid solar cells, based on vertically aligned n-type silicon nanowires (n-Si NWs) and p-type conducting polymers (PEDOT:PSS), were investigated as a function of Si conductivity. The n-Si NWs were easily prepared from the n-Si wafer by employing a silver nanodot-mediated micro-electrochemical redox reaction. This investigation shows that the photocurrent-to-voltage characteristics of the n-Si NW/PEDOT:PSS cells clearly exhibit a stable rectifying diode behavior. The increase in current density and fill factor using high conductive silicon is attributed to an improved charge transport towards the electrodes achieved by lowering the device's series resistance. Our results also show that the surface area of the nanowire that can form heterojunction domains significantly influences the device performance.  相似文献   

8.
利用直流电化学沉积法,在多孔阳极氧化铝模板中首次制备出了具有[220]取向的单晶面心立方结构的CoCu固溶体合金纳米线阵列,其Co含量高达70%.透射电子显微镜显示纳米线均匀连续,具有较高的长径比,约为300.磁性测量表明所制备的Co(70)Cu(30)合金纳米线具有超高的矫顽力Hc//=2438 Oe(1 Oe=79.5775 A/m)和较高的矩形比S//=0.76,远高于以往报道的CoCu合金纳米线的磁性,分析表明磁性好的主要原因是由于较高Co含量和高形状各向异性.通过磁性测量和模型计算,得到Co(70)Cu(30)合金纳米线阵列在反磁化过程中遵从对称扇型转动的球链模型,并从结构的角度分析了Co(70)Cu(30)合金纳米线阵列的反磁化行为.  相似文献   

9.
Highly pure magnesium borate (Mg2B2O5) nanowires with an average diameter of - 30 nm, an average length of 15 μm, and a high aspect ratio of - 500 have been synthesized on a large scale via a two-step method. MgBO2(OH) nanowires with high aspect ratios were first prepared via a PVP-assisted hydrothermal technique. Using these nanowires as precursors, single crystalline Mg2B205 nanowires were synthesized by post-annealing treatment at a relatively low temperature of 700 ℃. The important effect of the MgBO2(OH)-Mg2B2O5 conversion process on the morphology of the Mg2B2O5 nanowires was investigated and it was indicated that the recrystallization process plays an important role in the protection of the one-dimensional (1D) nanostructure. Moreover, the rigidity and the toughness of the Mg2B2O5 nanowire- reinforced PHA composites were tremendously improved compared to those of the pure PHA. Our results demonstrate the effectiveness of Mg2B2O5 nanowires for reinforcement applications in polymer composites.  相似文献   

10.
Highly ordered and dense TiO2 nanopore arrays are directly nanoimprinted on a transparent conductive glass substrate by using a polymethylmethacrylate/polydimethylsiloxane (PMMA/PDMS) composite soft template, which is replicated from an anodic aluminum oxide (AAO) replica mold. Results indicate that heat infiltration under vacuum conditions can ensure complete filling of PMMA into the AAO pores, and that free-standing PMMA nanorods with an aspect ratio more than 5 can be obtained by adjusting the AAO pore depth based on a freeze-drying technique. TiO2 nanopore arrays with different diameters from 30 to 300 nm and inter-pore distances between 70 and 450 nm can be easily fabricated by using the corresponding templates with different sizes. Preliminary solar cells are also assembled with a heterojunction of conjugated polymer/TiO2 nanopore arrays. Results indicate that the construction of poly-(3-hexylthiophene) (P3HT)/TiO2 nanopore arrays can be more helpful in quenching the PL emission of P3HT than that of P3HT/flat TiO2 film, and a maximum efficiency of about 0.32% can be obtained for a photovoltaic device with a TiO2/[6,6]-phenyl-C61-butyric acid methyl ester (PCBM)/P3HT structure.  相似文献   

11.
We have studied the effect of thermal treatment on the magnetic domain structure and magnetic reversal process of amorphous and nanocrystalline Fe40Co38Mo4B18 microwires. The domain structure and the magnetization reversal of amorphous FeCoMoB microwires reflect the complex stress distribution introduced by the glass coating. Hence, the thickness of radial domain structure decreases with temperature and the temperature dependence of the switching field presents a discontinuous behavior. After nanocrystallization, the domain structure of FeCoMoB microwire is almost constant within the temperature range 10-400 K and the switching field decreases almost linearly with temperature mostly because of the decrease of saturation magnetization.  相似文献   

12.
Crystalline Co nanowires were pulse electrodeposited into nanoporous aluminum oxide template having an ultra-thinned barrier layer. The effects of off-time between pulses and electrolyte acidity on the microstructure and magnetic properties of the nanowires were investigated. Increasing the off time between pulses increased the crystallinity and the alignment of easy axis with the wire axis. The rate of these increments was seen to depend on the electrolyte acidity and reached its maximum at pH=5.25 electrolyte acidity. Optimizing the crystallinity and crystal orientation, a coercivity value of 3320 Oe and a squareness of>90% were obtained for pure Co nanowires. A 10% increase in coercivity was found after annealing the samples.  相似文献   

13.
Bi2SiO5 modified Si nanowire array films were fabricated as photo-catalysts via dip-coating Bi(NO3)3 on silver-assisted electroless wet chemical etching Si nanowires and subsequently annealing. The structures and morphologies of as-prepared samples are characterized by X-ray diffraction, Fourier transform infrared spectrum, scanning electron microscopy and transmission electron microscopy. The results of photocatalytic experiments indicated that the Bi2SiO5 modified Si nanowire arrays benefit the improvement for efficient electron-hole separation and photo-catalytic stability, thereby possessing superior photo-degradation performance. These hybrid nanowire arrays will be promising materials for photo-catalysts and degradation agents.  相似文献   

14.
We present an analytic theory of the domain wall depinning in magnetic nanostructure with perpendicular magnetic anisotropy. The variational principle reveals that the wall is bent in the form of a circular arc which intersects the structure boundaries perpendicularly. The radius is inversely proportional to the magnetic field. With increasing the field the radius shrinks, followed by depinning from the constriction when the arc is not geometrically allowed. The depinning field is proportional to the sine of the constriction angle and the inverse of the constriction width. The validity of the theory is confirmed by comparison with the micromagnetic simulation.  相似文献   

15.
In this work we present a detailed numerical investigation on the magnetic domain formation and magnetization reversal mechanism in sub-millimeter amorphous wires with negative magnetostriction by means of micromagnetic calculations. The formation of circular magnetic domains surrounding a multidomain axially oriented central nucleus was observed for the micromagnetic model representing the amorphous wire. The magnetization reversal explained by micromagnetic computations for the M-H curve is described in terms of a combined nucleation-propagation−rotational mechanism after the saturated state. Results are interpreted in terms of the effective magnetic anisotropy.  相似文献   

16.
Based on Monte Carlo simulation, the spin configurations, thermal magnetization and hysteresis loops of the clusters coated by the surface shell with radial anisotropy are studied. Interestingly, a new multidomain containing a few of subdomains whose easy directions are along those of the configurational anisotropy, a magnetization curve in steps and a first order phase transition from the single domain to the multidomain in the thermal and field magnetization processes, are found, which is as a result of the interplay of the configurational anisotropy, the size effect, the surface anisotropy, the applied field and the thermal fluctuation. In this first order transition, we find a critical temperature, a critical surface anisotropy and a critical size. The simulated temperature dependence of the coercivity of the cluster with the surface anisotropy can be fitted by Hc (T)=Hc (0)(1-CαTα) with low value of α, which explains well the experimental results of the nanoparticles. Moreover, it is found that the hysteresis loops and coercivity are strongly affected by the cluster size and the thickness of the surface layer.  相似文献   

17.
Magnetic anisotropy and magnetooptic Kerr effect for epitaxial films of CoxMnyGe1−xy grown on Ge (1 1 1) substrates have been studied systematically in the compositional vicinity of the Heusler alloy Co2MnGe. A large quadratic magnetooptic Kerr effect has been observed within a narrow region of composition centered around the Co to Mn atomic ratio of 2. The effect has been used to probe and quantify the magnetic anisotropy of the system, which is shown to have a strong sixfold in-plane component accompanied by a weak uniaxial component at room temperature. These properties are shown to depend sensitively on atomic ratio between Co and Mn, indicating the presence of an intrinsic composition-driven phenomenon.  相似文献   

18.
《Current Applied Physics》2015,15(7):819-828
Magnetic nanowires (NWs) electrodeposited into solid templates are of high interest due to their tunable properties which are required for magnetic recording media and spintronic devices. Here, highly ordered arrays of FeNi NWs with varied lengths (ranging from 2.5 to 12 μm) and diameters (between 45 and 75 nm) were fabricated into anodic aluminum oxide templates using a pulsed ac electrodeposition technique. X-ray diffraction patterns along with energy dispersive spectroscopy indicated the formation of Fe70Ni30 NWs with fcc and bcc alloy phases, being highly textured along the bcc [110] direction. Magnetic properties were studied by hysteresis loop measurements at room temperature and they showed reductions in coercivity and squareness values by increasing length and diameter. Further, magnetic fingerprints of the NWs were characterized using the first-order reversal curve (FORC) analysis. FORC measurements revealed that, with increasing length and diameter from 2.5 to 10 μm and 45–55 nm, respectively, besides an increase in inter-wire magnetostatic interactions, a transition from a single domain (SD) state to a pseudo SD state occurred. Moreover, a multi-domain (MD) state was found for the longest length and diameter. While the irreversible magnetization component of the SD NWs was approximately 100%, the reversible component of MD NWs increased up to 20%.  相似文献   

19.
Ordered ferromagnetic-nonmagnetic heterogeneous Fe60Pb40 nanowire arrays were successfully fabricated by alternating current (AC) electrodeposition into nanoporous alumina templates. Transmission electron microscopy (TEM) image and selected-area diffraction (SAED) pattern analysis showed that the Fe60Pb40 nanowires are polycrystalline with an average diameter of 22 nm and lengths up to several micrometers. X-ray diffraction (XRD) observations indicated that α-Fe and fcc Pb phase coexist and do not form metastable alloy phase. The as-deposited samples were annealed at 200, 300, 400 and 500 °C, respectively. Magnetic measurements showed that nanowires have high magnetic anisotropy with their easy axis parallel to the nanowire arrays, and the coercivity of the samples increased with the annealing temperature up to 400 °C and reached a maximum (2650 Oe). The change of magnetic properties associated with the microstructure was discussed.  相似文献   

20.
Starting from the theoretical results established in Tournus and Bonet (2010 [1]) to describe ZFC/FC (zero-field cooled/field cooled) susceptibility curves, we examine the limitations of the widely used two states model (or abrupt transition model) where the magnetic particles are supposed to be either fully blocked or fully superparamagnetic. This crude model appears to be an excellent approximation in most practical cases, i.e. for particle assembly with broad enough size distributions. We improve the usual model by taking into account the temperature sweep existing in experimental measurements. We also discuss a common error made in the use of the two states model. We then investigate the relation between the ZFC peak temperature and the particle anisotropy constant, and underline the strong impact of the size dispersion. Other useful properties of ZFC/FC curves are discussed, such as invariance properties, the reversibility of the FC curve and the link between the susceptibility curves and the magnetic anisotropy distribution. All these considerations lay solid bases for an accurate analysis of experimental magnetic measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号