首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Neutron scattering studies of single crystal LiNiPO4 reveal a spontaneous first-order commensurate-incommensurate magnetic phase transition. Short- and long-range incommensurate phases are intermediate between the high temperature paramagnetic and the low temperature antiferromagnetic phases. The modulated structure has a predominant antiferromagnetic component, giving rise to satellite peaks in the vicinity of the fundamental antiferromagnetic Bragg reflection, and a ferromagnetic component, giving rise to peaks at small momentum transfers around the origin at (0,+/-Q,0). The wavelength of the modulated magnetic structure varies continuously with temperature. It is argued that the incommensurate short- and long-range phases are due to spin-dimensionality crossover from a continuous to the discrete Ising state.  相似文献   

2.
We have investigated non-resonant high energy X-ray magnetic scattering from EuAs3 both in the antiferromagnetic and in the incommensurate phase by using an X-ray energy of 104 and 106 keV. In the antiferromagnetic phase, we obtained a signal to background ratio of about 10:1 for the magnetic Bragg peak at Q=(−1,0,1/2) and a maximum count rate of about 200 counts/s at T=3.1 K. To our knowledge this is the first reported observation of the non-resonant magnetic signal from a rare-earth ion at X-ray energy as high as 106 keV. The temperature dependence of the integrated intensity of the (−1,0,1/2); magnetic reflection has been measured and compared with that obtained previously by neutron diffraction. We measured the integrated intensities of several magnetic reflections from the antiferromagnetic phase and have compared them with those calculated from the magnetic structure model derived from neutron diffraction. The intensities of the magnetic satellite reflections from the incommensurate phase have been measured and have been found to be very weak. We also investigated the temperature variation of the lattice spacing close to the magnetic ordering transition and have found a large magnetoelastic anomaly at the lock-in phase transition.  相似文献   

3.
A sequence of maxima of microwave absorption has been found in the ferromagnetic resonance (FMR) spectra of the chiral molecular ferrimagnet [Mn{(R/S)-pn}]2[Mn{(R/S)-pn}2(H2O)][Cr(CN)6]2, which, as is shown, corresponds to the spin-soliton resonance. It has been established that this sequence corresponds to an incommensurate magnetic structure induced by the competition between the symmetric and antisymmetric exchange interactions. On the basis of the FMR spectra and their dependence on the temperature, the parameters of the modulated magnetic structure have been estimated.  相似文献   

4.
The specific heat of single-crystal NdMnO3 was investigated from 2 to 20 K under different magnetic fields up to 8 T. All the specific heat data show a Schottky-like anomaly, which becomes more indistinctive as increasing magnetic field. The experiment data were successfully fitted by taking into account factors such as crystal-field splitting, the two-level Schottky anomaly, the lattice vibration, and type-A antiferromagnetic (A-AF) spin waves. It was found that the splitting of the ground state doublet of Nd3+ ion increases linearly with magnetic field. The above phenomena can be interpreted in terms of the model of unchanged effective molecular field at Nd3+ site caused by the ferromagnetic component of A-AF structure of Mn spins. This ferromagnetic component is likely caused by the GdFeO3-type octahedron rotation. In addition, it was also found that the magnetic field increases the spin-wave stiffness coefficient, but reduces the Debye temperature.  相似文献   

5.
The magnetic properties of Mo/IrMn/Co/Mo/SiO2/Si structures with alternative sequences of the antiferromagnetic and ferromagnetic layers have been studied by measuring the angular dependence of the high-frequency radiation absorption in the ferromagnetic resonance region. The layers have been prepared by pulsed laser deposition in the absence of a magnetic field. It has been found that thermal annealing and cooling make it possible to create the exchange bias in the structure with the upper antiferromagnetic layer at a temperature much below the Néel temperature. At the same time, the identical heat treatment does not induce the exchange bias in the structure with the upper ferromagnetic layer. The possible mechanisms of the phenomena observed are discussed.  相似文献   

6.
A computational model was developed to simulate the spinodal decomposition process of ferromagnetic alloys under an external magnetic field. In this model, the temporal evolution of the modulated structure was described by a phase field method, and the magnetic configuration was solved by using a micromagnetic method. The spinodal decomposition and coarsening processes of a single magnetic particle and an A-B hypothetical system under an external magnetic field were simulated using the proposed model. The simulation results show that the precipitated particles were elongated along the direction of the external magnetic field. The dependence of the modulated structure of an A-B hypothetic system on external magnetic field is much more sensitive than that of the single particle structure. The simulation results also demonstrate that the modulation of the external magnetic field is effective even if the spinodal decomposition has been completed and a stable modulated structure was formed.  相似文献   

7.
Spatially nonuniform magnetic anisotropy was induced in the basal plane of an iron borate (FeBO3) single crystal by applying low-symmetry stresses. The effect of nonuniform magnetic anisotropy on the magnetic state of this weak ferromagnet was studied by magnetooptic methods. It is revealed that, when a nonuniformly stressed FeBO3 crystal is magnetized in the basal plane along a certain direction (depending on the symmetry of the applied stress), a transition from a uniform to a spatially modulated magnetic state occurs, which is not observed in the crystal in the absence of stresses. The modulated magnetic phase of the crystal can be represented as a static spin wave linearly polarized in the basal plane, with the azimuth of the weak-ferromagnetism vector oscillating about the direction of the mean magnetization. The temperature and field dependences of the spatial period of the modulated magnetic structure and the amplitude of oscillations of the ferromagnetism vector are studied, and the temperature dependence of the field range over which the modulated phase exists in the nonuniformly stressed FeBO3 crystal is found. The results are discussed in terms of the phenomenological theory of magnetic phase transformations. It is shown that the theoretical model used consistently describes all the experimental results of the study of the noncollinear magnetic phase of the nonuniformly stressed FeBO3 crystal.  相似文献   

8.
The temperature dependence of the intensity of the Bragg and the transverse component of quasi-elastic neutron scattering from the single-crystal model relaxor PbMg1/3Nb2/3O3 (PMN) has been studied for various applied electric fields. It is shown that application of a field E>E th ≈1.6 kV/cm increases the elastic scattering intensity and reduces the intensity of the transverse diffuse-scattering component and that, below 230 K and for E>6 kV/cm, the elastic-scattering intensity saturates while the temperature-dependent part of the transverse diffuse-scattering component becomes practically suppressed. The measured temperature and field dependences of the intensity of type (h00) and (hh0) Bragg reflections provide supportive evidence both for the presence of considerable lead-ion displacements relative to the ideal perovskite sites and for the existence in strong electric fields of an induced transition to the ferroelectric phase below 250 K. Fiz. Tverd. Tela (St. Petersburg) 40, 1905–1910 (October 1998)  相似文献   

9.
汪津  姜文龙  华杰  王广德  韩强  常喜  张刚 《物理学报》2010,59(11):8212-8217
制备结构为ITO/Co/NPB/Alq3/LiF/Al的有机发光器件,测量了室温下磁场对器件发光效率和电流的影响.发现磁场强度小于80 mT时,器件发光效率随磁场强度的增加而增大,最大为18.8%,随磁场强度的继续增加发光效率的增强趋于饱和.效率的增加是Co的自旋极化的注入和磁场效应共同作用的结果,其中自旋极化注入起主要作用.在磁场强度小于60 mT时电流随磁场增强而增加,最大为6.9%,随磁场强度的进一步增加电流的增加有所减弱.产生这种现象的原因可归结为磁场相关的单线态极化子对的解 关键词: 有机电致发光 自旋极化 磁场效应  相似文献   

10.
We study the structure and magnetic properties of Co x InSe layered crystals electrochemically intercalated by cobalt in a constant magnetic field. It is found that impurity clusters consisting of cobalt nano-particles with the fcc structure are formed in the intercalates under investigation on the Van der Waals planes in the space between the layers. Intercalates Co0.1InSe obtained by implantation in a magnetic field exhibit a change in their magnetic properties (dependence of the magnetic moment in the magnetic field strength has the form of a hysteresis loop, which is typical of ferromagnetic materials).  相似文献   

11.
The magnetic behaviour of CeAl2 at low temperature is not apparent : contradictory experiments have assumed either an antiferromagnetic ordering or a moment reduction of the Ce3+ ion. Using the multidetector D1B at the I.L.L. high flux reactor, we have measured neutron diffraction diagrams, above and below the transition temperature of 3.8 K. At 1.9 K, we have found very weak magnetic reflections corresponding to an antiferromagnetic structure sinusoǐdally modulated, according to the propagation vector (0.612, 0.388, 0.5). The moment reduction in such a modulated structure at 1.9 K can hardly be explained by a thermal partial disordering of the moments. It is rather due to the existence of a singlet ground state resulting from the negative exchange between the 4f electron of Ce3+ and the conduction electrons.  相似文献   

12.
Neutron diffraction study has been performed on the Tb5Sb3 and Tb5Si1.5Sb1.5 compounds (hexagonal Mn5Si3-type, hP16, P63/mcm) to understand their magnetic structures. The temperature dependence of neutron diffraction results proves that these intermetallics show a complex magnetic ordering. The Tb5Sb3 presents five subsequent changes in magnetic structure at ∼150, 119, 85, 70 and 54 K on cooling: paramagnet→antiferromagnetic flat spiral→ferromagnetic cone→antiferromagnetically canted ferromagnetic cone→canted AF→sine modulated AF. The Tb5Si1.5Sb1.5 shows two subsequent changes in magnetic structure at 123 and 66 K: paramagnet→sine modulated antiferromagnet I→sine modulated antiferromagnet II. The Tb5Si3, Tb5Sb3 and Tb5Si1.5Sb1.5 have the different magnetic structure in the full temperature range.  相似文献   

13.
We have studied the unusual low-temperature magnetic phase of Er2Ni2Pb using powder neutron diffraction measurements in zero field down to 460 mK. Our previous neutron diffraction experiments down to 1.5 K showed that magnetic Bragg reflections seen in Er2Ni2Pb can be indexed by several propagation vectors that partially coexist. All the incommensurate propagation vectors seemed to disappear in the low temperature limit. The present study, however, shows that reflections belonging to the propagation vector q’ = (0.47 0 1/2) do not disappear but remain present down to 460 mK. This highly unexpected result suggests that the magnetic structure described by this propagation vector might not be a simple sine-wave modulation. One interesting possibility here is a spin-slip structure as the ground state.  相似文献   

14.
The contributions of several different subsystems to the magnetic properties of Ge0.99Mn0.01 nanowires are distinguished. The ferromagnetic resonance spectrum is found to have four components, two of which have the same temperature dependence and a Lorentzian shape. Presumably, these components correspond to the excitation of spin waves in the Mn3+ ion subsystem under the simultaneous influence of exchange and dipole-dipole interactions. There is also another Lorentzian-shaped component corresponding to resonance in the subsystem of localized Mn2+ centers. The fourth spectrum component has an asymmetric Dyson shape and is related to the resonance of mobile paramagnetic centers. A correlation is found between the temperature dependences of the spectral parameters of the magnetic resonances of the localized centers (Mn3+ and Mn2+ ions) and the charge carrier subsystem. This correlation indicates that the ferromagnetic exchange between the localized centers is due to carrier spin transport.  相似文献   

15.
The ternary rare earth compound NdRh4B4 has been studied by means of critical field, low temperature heat capacity, and static magnetic susceptibility measurements. Features in the upper critical field and heat capacity data at 1.31 K and 0.89 K suggest the occurrence of long-range magnetic order in the superconducting state. The temperature dependence of the static magnetic susceptibility follows a Curie-Weiss law with an effective magnetic moment μeff = 3.58 ± 0.05 μB and a Curie-Weiss temperature θp = ?6.2 ± 1.0 K between 20 K and room temperature. However,, magnetization vs. applied magnetic field isotherms suggest the development of a ferromagnetic component in the Nd3+ magnetization at low temperatures.  相似文献   

16.
The static and high-frequency dynamic magnetic properties and photoluminescence of two-dimensional semiconductor GaAs heterostructures containing an InGaAs quantum well and a thin manganese layer (δ layer) are studied. It is found that the Curie temperature is T C ≈ 35 K and the magnetic anisotropy field of the ferromagnetic manganese δ layer is H a ≈ 600 Oe. The spin resonance spectrum exhibits a line in weak fields (from −50 to 100 Oe), which is observed in the same temperature interval T < 40 K where the ferromagnetic ordering of the manganese δ layer occurs. This line is probably caused by the nonresonance contribution of the spin-dependent scattering of charge carriers to the negative magnetic resistance. The dependence of the degree of polarization of photoluminescence on the magnetic field also points to the ferromagnetic behavior of the manganese δ layer.  相似文献   

17.
The temperature dependence of exchange bias and coercivity in a ferromagnetic layer coupled with an antiferromagnetic layer is discussed. In this model, the temperature dependence comes from the thermal instability of the system states and the temperature modulated relative magnetic parameters. Morever, the thermal fluctuation of orientations of easy axes of antiferromagnetic grains at preparing has been considered. From the present model, the experimental results can be illustrated qualitatively for available magnetic parameters. Based on our discussion, we can conclude that soft ferromagnetic layer coupled by hard antiferromagnetic layer may be very applicable to design magnetic devices. In special exchange coupling, we can get high exchange bias and low coercivity almost independent of temperature for proper temperature ranges.  相似文献   

18.
A theoretical study is made into the effect of the crystal, orbital, and charge structures on the magnetic structure and spin-wave spectra and on the antiferromagnetic resonance (AFMR) for R0.5Ca0.5MnO3 crystals of monoclinic structure. The model assumes fixed crystal, charge, and orbital structures and enables one to determine the orbitally dependent exchange interaction and single-ion anisotropy for R = La, Pr, Tb. A 16-sublattice weakly noncollinear magnetic CE-structure without a ferromagnetic component is obtained. The behavior of magnetic structure in an external magnetic field is simulated, and the values of fields of spin-flop-transition for different Rs are obtained. The law of spin-wave dispersion and the field dependence of the antiferromagnetic-resonance spectrum are calculated.  相似文献   

19.
The effect of diamagnetic impurities on the stability of the homogeneous magnetic state of rhombohedral antiferromagnets with weak ferromagnetism (α-Fe2O3:Ga and FeBO3:Mg) is studied experimentally. It is shown that the application of an external magnetic field in the basal plane in the crystals under study in a certain temperature range induces a magnetic superstructure along the hard magnetization axis, which can be presented in the form of a ripplon phase with the azimuth of the local ferromagnetism vector oscillating about the direction of the field. The preferred orientation of the discovered modulated structures relative to crystallographic directions in the basal plane of α-Fe2O3:Ga and FeBO3:Mg is studied, and the dependence of the spatial period of the superstructure on the applied magnetic field and temperature is analyzed. The magnetic-field-induced transition of the studied crystals from a homogeneous to an inhomogeneous magnetic state is described phenomenologically on the basis of the thermodynamic potential with gradient terms. In the discussion of physical reasons for magnetic order parameter modulation in weak ferromagnetic doped with diamagnetic ions, preference is given to the mechanism associated with the emergence of uniaxial magnetic centers with a random distribution of azimuths of easy axes in the basal plane of the crystal in the vicinity of impurities. A model describing the formation of a modulated magnetic state in α-Fe2O3:Ga and FeBO3:Mg is proposed, according to which the competition between magnetoanisotropic and Zeeman interactions in the inhomogeneous magnetic phase of these crystals leads to periodic deviations in the direction of the local ferromagnetism vector from the direction of magnetization.  相似文献   

20.
The general effective-medium dispersion relations are derived for surface-localized magnetic polaritons which propagate parallel to the surface between a superlattice and semi-infinite bulk material, as applied to ferromagnetic and antiferromagnetic superlattices, in the situation when a static magnetic field is applied in the plane of the layers and parallel to the magnetization. The dependence of the energy of the surface waves on the volume fraction of the ferromagnetic superlattice component and the influence of the external magnetic field on the spectrum of the surface magnetic polaritons for the antiferromagnetic superlattice are investigated. The spectrum of the surface-localized magnetic polaritons which appear at the junction of the magnetic (ferromagnetic and antiferromagnetic) superlattice with the magnetic material are more complex, in contrast to the cases of semi-infinite magnetic material or semi-infinite magnetic SL. It is essential that in all cases in the presence of the external magnetic field the spectrum of the magnetic polaritons are non-reciprocal. The properties of surface polaritons are discussed in detail for the system ferromagnetic superlattice (YIG/non magnet)/YAG and the antiferromagnetic superlattice (MnF2/ZnF2)/FeF2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号