共查询到20条相似文献,搜索用时 15 毫秒
1.
Chiral liquid crystals have been investigated by means of a multicanonical Monte Carlo approach in order to characterize their phase behaviour by microcanonical equilibrium properties. The liquid crystals were described by three-dimensional lattice systems with intermolecular interactions given by the chiral Lebwohl-Lasher potential. Self-determined boundary conditions have been applied in order to enable the formation of chiral phases with equilibrium pitch. Selected thermodynamic properties, e.g. microcanonical entropy, temperature, heat capacity and a set of order parameters have been determined with dependence on microcanonical total energy. A cholesteric phase with temperature-induced helix inversion could be proven where the helical superstructure of the single component system studied changed its handedness through an infinite-pitch system. The thermodynamical behaviour in the microcanonical ensemble was found to be very similar to the behaviour in the canonical ensemble. The study of microcanonical equilibrium properties by means of multicanonical Monte Carlo simulations was shown to be a powerful tool for the study of the phase behaviour of model liquid crystals. 相似文献
2.
3.
Chunjuan TangChunhe Zang Jianfeng SuDongmei Zhang Guanghai LiYongsheng Zhang Ke Yu 《Applied Surface Science》2011,257(8):3388-3391
In this paper we report the structure and magnetic properties of flower-like α-NiS nanostructure prepared by a facile one-step hydrothermal method. The flowers consist of polycrystalline nanoflakes, and the nanoflakes are composed of single crystalline nanocrystals with an average size of about 15 nm. The α-NiS flowers exhibit the transition from paramagnetism to ferromagnetism with the blocking temperature of about 12 K. The field dependences of the magnetization prove that these flowers demonstrate a coexistence of antiferromagnetism and ferromagnetism at 5 K, and exhibit a strong paramagnetic response at temperature higher than 100 K. 相似文献
4.
5.
《Chinese Journal of Physics (Taipei)》2018,56(4):1640-1647
The aim of this work is to study the magnetic properties in deferent fullerenes Xn like nano-structures, where the symbol X can be assigned to any magnetic atom and “n” is the number of these magnetic atoms. Our study is based on the fullerenes: C20, C60 and C70, formed by atoms with mixed spins σ = 1 and S = 1/2. We focus our interest on the examination of the influence of the coupling exchange interactions between atoms, the external magnetic and the crystal fields. Also, we present and discuss the nature of the corresponding ground state phase diagrams. The effect of the compensation and critical temperatures is also presented for different magnetization profiles by using the Monte Carlo simulations. The behavior of the total magnetizations as a function of the physical system parameters is also analyzed and discussed, in this study. 相似文献
6.
7.
Hakan Kockar Mursel Alper Turgut Sahin Oznur Karaagac 《Journal of magnetism and magnetic materials》2010,322(9-12):1095-1097
Co–Fe films were electrodeposited on polycrystalline Titanium substrates from the electrolytes with different pH levels. X-ray diffraction (XRD) was used to study the crystal structure of the films. The XRD patterns showed that the films grown at the pH levels of 3.70 and 3.30 have a mixed phase consisting of face-centred cubic (fcc) and body-centred cubic, while those grown at pH=2.90 have only fcc structure. It was observed that the film composition, by energy dispersive x-ray spectroscopy, contain around 88 at% Co and 12 at% Fe for all films investigated in this study. Morphological observations indicated that all films have grainy structure with the slight change of grain size depending on the electrolyte pH. Magnetoresistance measurements, made at room temperature, showed that all films exhibited anisotropic magnetoresistance, which is affected by the electrolyte pH. From the magnetic measurements made by vibrating sample magnetometer, the saturation magnetization increases as the electrolyte pH decreases. Furthermore, all films have in-plane easy-axis direction of magnetization. 相似文献
8.
Using density-functional calculations within the generalized gradient approximation (GGA)+U framework,we investigate the structural,electronic,and magnetic properties of the ground states of SrFeOn (n = 2 and 2.5).The magnetism calculations show that the ground states of both SrFeO2 and SrFeO2.5 have G type antiferromagnetic ordering,with indirect band gaps of 0.89 and 0.79 eV,respectively.The electronic structure calculations demonstrate that Fe cations are in the high-spin state of (dz2 )2(dxz,dyz)2(dxy)1(dx2 y2 )1(S = 2),unlike the previous prediction of (dxz,dyz)3(dxy)1(dz2 )1(dx2 y2 )1(S = 2) for SrFeO2,and in the high-spin state of (dxy,dxz,dyz,dx2 y2 ,dz2 )5(S = 5/2) for SrFeO2.5. 相似文献
9.
10.
K.D. Mynbaev A.V. Shilyaev A.A. Semakova E.V. Bykhanova N.L. Bazhenov 《Opto-Electronics Review》2017,25(3):209-214
Photoluminescence of HgCdTe epitaxial films and nanostructures and electroluminescence of InAs(Sb,P) light-emitting diode (LED) nanoheterostructures were studied. For HgCdTe-based structures, the presence of compositional fluctuations, which localized charge carriers, was established. A model, which described the effect of the fluctuations on the rate of the radiative recombination, the shape of luminescence spectra and the position of their peaks, was shown to describe experimental photoluminescence data quite reasonably. For InAs(Sb,P) LED nanoheterostructures, at low temperatures (4.2–100 K) stimulated emission was observed. This effect disappeared with the temperature increasing due to the resonant ‘switch-on’ of the Auger process involving transition of a hole to the spin-orbit-splitted band. Influence of other Auger processes on the emissive properties of the nanoheterostructures was also observed. Prospects of employing II–VI and III–V nanostructures in light-emitting devices operating in the mid-infrared part of the spectrum are discussed. 相似文献
11.
It is important, for electronic application, to decrease the melting point of SnZn9 solder alloy because it is too high as compared with the most popular eutectic Pb–Sn solder alloy. Adding Cd causes structural changes such as phase transformations, dissolution of atoms and formation of Cd crystals in the quenched SnZn9 alloy, and its physical properties are affected by this change. For example, the melting point is decreased towards the melting point of the Pb–Sn eutectic alloy, or even much less. The structure, electrical and mechanical properties of quenched Sn91? x Zn9Cd x (x?=?0 or x?≥?5) alloys have been investigated. Adding Cd to a quenched SnZn9 alloy increases its electrical resistivity and decreases its elastic modulus and internal friction. The Sn71Zn9Cd20 alloy has the lowest melting point (162 °C) and electrical and internal frictions as compared with commercial Pb–Sn solder alloys. 相似文献
12.
Mohammad Yuonesi Mojtaba Yaghobi Hamid Reza Alae 《Physica B: Condensed Matter》2011,406(15-16):2962-2966
The electronic structure, magnetic properties and also the bonding mechanism of the pure SiC and compounds SiC:Cr and SiC:Cr:Al have been studied using the Quantum SPRESSO Software within the density-functional theory (DFT). β-SiC, which is a nonmagnetic semiconductor, has more applications in industry. For the magnetic property, it is alloyed with transition metal. One of the transition metal is chromium. The calculations showed that its alloy at both Si site and C site (SiC:Cr) changes the physical properties of the host material and contributes in the molecular bond. It is seen that if the Al atom was doped in the compounds, SiC:Cr will produce hole carriers and the magnetic properties will thus increase to the considerable values due to the mediation effect. The magnetic property will create the up and down spin band gap to filter carriers. The charge density distribution illustrates that the Al atom has the atomic behavior in the compounds Sic:Cr:Al and does not contribute in the molecular bond. For comparison, the calculations were performed for the pure β-SiC. 相似文献
13.
14.
15.
Muhammad Naeem Ashiq Muhammad Javed Iqbal Iftikhar Hussain Gul 《Journal of magnetism and magnetic materials》2011,323(3-4):259-263
Nanosized strontium hexaferrite doped with a binary mixture of Al–Cr at the iron site is synthesized by the chemical co-precipitation method. The hexagonal phase and the nominal composition of the synthesized nanomaterials are confirmed by X-ray diffraction and energy dispersive X-ray fluorescence analyses. The crystallite size is found in the range of 14–30 nm, which is small enough to obtain a suitable signal-to-noise ratio in high density recording media. The average grain size of the material is found in the range of 40–85 nm as determined by scanning electron microscopy. The magnetic properties, such as saturation magnetization, remanence and coercivity, are calculated from hysteresis loop measurement, and the value of the magnetic moment is also calculated from the saturation magnetization data. All the magnetic properties are found to decrease with the increase in Al–Cr content, which is due to the occupation of the doped cations at the octahedral sites (12k and 2a) having spin of electrons in upward direction. The variation in the dielectric constant and dielectric loss factor with frequency is discussed on the basis of Wagner and Koop’s theory. It is found that the dielectric constant decreases with the increase in Al–Cr content, which suggests that the doped nanomaterials are suitable for applications in microwave devices. 相似文献
16.
Co1−xZnxFe2O4 (with x varying from 0 to 0.7) nanoparticles to be used for ferrofluid preparation were prepared by chemical co-precipitation method. The fine particles were suitably dispersed in transformer oil using oleic acid as the surfactant. The magnetization (Ms) and the size of the particles were measured at room temperature. The magnetization (Ms) was found to decrease with the increase in zinc substitution. The magnetic particle size (Dm) of the fluid was found to vary from 11.19 to 4.25 nm decreasing with the increase in zinc substitution. 相似文献
17.
Zirconia (ZrO2) nanostructures of various sizes have been synthesized using sol–gel method followed by calcination of the samples from 500 to 700 °C. The calcined ZrO2 powder samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier-transform infra-red spectroscopy (FT-IR), UV–visible spectroscopy (UV–vis.), Raman spectroscopy (RS) and thermogravimetric analysis (TGA). The phase transformation from tetragonal (t) to monoclinic (m) was observed. The average diameter of the ZrO2 nanostructures calcined at 500, 600 and 700 °C was calculated to be 8, 17 and 10 nm, respectively. The ZrO2 sample calcined at 500 °C with tetragonal phase shows a direct optical band gap of 5.1 eV. The value of optical band gap is decreased to 4.3 eV for the ZrO2 calcined at 600 °C, which contains both tetragonal (73%) and monoclinic (27%) phases. On further calcination at 700 °C, where the ZrO2 nanostructures have 36% tetragonal and 64% monoclinic phases, the optical band gap is calculated to be 4.8 eV. The enhancement in optical band gap for ZrO2 calcined at 700 °C may be due to the rod like shape of ZrO2 nanostructures. The tetragonal to monoclinic phase transformation was also confirmed by analyzing Raman spectroscopic data. The TG analysis revealed that the ZrO2 nanostructure with dominance of monoclinic phase is found to be more stable over the tetragonal phase. In order to confirm the phase stability of the two phases of ZrO2, single point energy is calculated corresponding to its monoclinic and tetragonal structures using density functional theory (DFT) calculations. The results obtained by theoretical calculations are in good agreement with the experimental findings. 相似文献
18.
In this paper we present two new numerical methods for studying thermodynamic
quantities of integrable models. As an example of the effectiveness of these
two approaches, results from numerical solutions of all sets of Bethe ansatz
equations, for small Heisenberg chains, and Monte Carlo simulations in
quasi-momentum space, for a relatively larger chains, are presented. Our
results agree with those obtained by the thermodynamic Bethe ansatz (TBA). As
an application of these ideas, the pairwise entanglement between two nearest
neighbors at finite temperatures is studied. 相似文献
19.
Using Monte Carlo simulations with the Metropolis algorithm, we have studied the influence of crystal-field interaction on the critical behavior of magnetic spin-1 Ising film on a cubic lattice structure. The phase diagrams in the (kBTc/J,R=Js/J) plane are obtained for different values of the crystal-field interaction. We found that the special point Rsp(Rc), at which the critical temperature is independent of the film thickness N, is independent of the crystal-field interaction and that the system may exhibit a tricritical behavior. 相似文献
20.
Pre-alloyed Mn50+x−yAl50−xCy (x=0, 2, 4, 6, 8; y=0, 1.7, 3) powders were mechanically milled (MM), and the as-milled powders subsequently annealed at temperatures from 350 to 600 °C to produce the ferromagnetic metastable L10-structured τ-phase. Bulk Mn54Al46 specimens were also annealed under the same conditions for comparison. The effects of the Mn concentration and C additions on phase formation, microstructure, magnetic properties, as well as on the magnetization mechanism of the Mn–Al–C alloys were systematically investigated. It was found that the magnetic properties are strongly dependent both on the fraction of the τ-phase and its microstructure. There exists a strong influence of the microstructural refinement, due to the ball milling, on the rate of ε-phase to τ-phase transformation and on the stability of the τ-phase. The kinetics of formation and subsequent decomposition of the magnetic τ-phase were markedly different in the MM and bulk alloys. Both remanence curves and δM plots showed no exchange coupling among the τ-phase nanograins. The mechanism for the magnetization process was determined to be domain wall pinning. 相似文献