首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The generalized uncertainty relation is introduced to calculate quantum statistic entropy of a black hole. By using the new equation of state density motivated by the generalized uncertainty relation, we discuss entropies of Bose field and Fermi field on the background of the five-dimensional spacetime. In our calculation, we need not introduce cutoff. There is not the divergent logarithmic term as in the original brick-wall method. And it is obtained that the quantum statistic entropy corresponding to black hole horizon is proportional to the area of the horizon. Further it is shown that the entropy of black hole is the entropy of quantum state on the surface of horizon. The black hole's entropy is the intrinsic property of the black hole. The entropy is a quantum effect. It makes people further understand the quantum statistic entropy.  相似文献   

2.
The generalized uncertainty relation is introduced to calculate entropy of the black hole. By using quantum statistical method, we directly obtain the partition function of Bose and Fermi field on the background of the plane symmetry black hole. Then we calculate the entropy of Bose and Fermi field on the background of black hole near the horizon of the black hole. In our calculation, we need not introduce cutoff. There are not the left out term and the divergent logarithmic term in the original brick-wall method. And it is obtained that the entropy of the black hole is proportional to the area of the horizon. The inherent contact between the entropy of black hole and the area of horizon is opened out. Further it is shown the entropy of black hole is entropy of quantum state on the surface of horizon. The black hole’s entropy is the intrinsic property of the black hole. The entropy is a quantum effect.  相似文献   

3.
刘成周  邓岳君  骆叶成 《物理学报》2018,67(6):60401-060401
利用黑洞的绝热不变性,研究了引力彩虹时空中Kerr黑洞的熵谱和面积谱.首先,在引力彩虹时空背景下,计算了Kerr黑洞的绝热不变作用量,并将其与玻尔-索末菲量子化条件相结合,给出了黑洞的熵谱.得到的熵谱没有引力彩虹时空本身具有的粒子能量依赖性,且是与经典Kerr黑洞中原始贝肯斯坦熵谱相同的等间距熵谱.然后,根据黑洞热力学第一定律和黑洞熵谱,给出了与原始贝肯斯坦谱不同的面积谱.该面积谱是非等间距的,而且有对黑洞面积的依赖性,但不依赖于探测粒子的能量.面积谱表明,随着黑洞面积的减少,面积间隔逐步变小;当黑洞达到普朗克尺度时,面积量子可降为零.这表示黑洞面积不再减少,黑洞出现辐射剩余.而在忽略色散关系的修正效应或在大黑洞极限下,面积谱的修正项可以忽略,引力彩虹Kerr黑洞面积谱可以回归到原始贝肯斯坦谱.此外,对引力彩虹时空Kerr黑洞的熵进行了讨论,得到了带有面积倒数修正项的黑洞熵,分析了黑洞熵的量子修正与面积谱量子修正的一致性.  相似文献   

4.
刘成周  赵峥 《物理学报》2006,55(4):1607-1615
按纠缠熵方法,计算了Gibbons-Maeda(G-M)dilaton黑洞视界外部与黑洞内量子态纠缠的一薄层内量子场的统计熵,得到了G-M dilaton黑洞的Bekenstein-Hawking熵.用广义不确定原理对量子态密度进行修正,克服了brick-wall模型中视界附近态密度的发散困难,该薄层可以紧贴在事件视界上.对brick-wall外部量子场中与黑洞内自由度有关联的自由度统计熵进行了计算,并把结果与brick-wall内量子场的熵进行比较分析,显示两结果具有与视界面积成正比的一致性,但后者能更 关键词: 纠缠熵 黑洞 广义不确定原理 截断  相似文献   

5.
Based on the work of Ghosh and Pereze, who view the black hole entropy as the logarithm of the number of quantum states on the Quantum Isolated Horizon (QIH)§ the entropy of Reissner-Nordström black hole is studied. According to the Unruh temperature, the statistical entropy of quantum fields under the background of Reissner-Nordström spacetime is calculated by means of quantum statistics. In the calculations we take the integral from the position of QIH to infinity, so the obtained entropy is the entanglement entropy outside the QIH. In Reissner-Nordström spacetime it is shown that if only the position of QIH is properly chosen the leading term of logarithm of the number of quantum states on the QIH is equal to the leading term of the entanglement entropy outside the black hole horizon, and both are the Bekenstein-Hawking entropy. The results reveal the relation between the entanglement entropy of black hole and the logarithm of the number of quantum states.  相似文献   

6.
In this paper, we present a derivation of the black hole area entropy with the relationship between entropy and information. The curved space of a black hole allows objects to be imaged in the same way as camera lenses. The maximal information that a black hole can gain is limited by both the Compton wavelength of the object and the diameter of the black hole. When an object falls into a black hole, its information disappears due to the no-hair theorem, and the entropy of the black hole increases correspondingly. The area entropy of a black hole can thus be obtained, which indicates that the Bekenstein–Hawking entropy is information entropy rather than thermodynamic entropy. The quantum corrections of black hole entropy are also obtained according to the limit of Compton wavelength of the captured particles, which makes the mass of a black hole naturally quantized. Our work provides an information-theoretic perspective for understanding the nature of black hole entropy.  相似文献   

7.
Taking into account the effect of the generalized uncertainty principle on the generalized black hole entropy and tacking the thin film brick-wall model, we calculate the entropy of the quantum scalar field in generalized static black hole. The Bekenstein–Hawking entropies of all well-known static black holes are obtained. The entropy of 2-D membrane just at the event horizon of static black hole is also calculated, and the result of the black hole entropy proportional to the event horizon area can be obtained more easily and generally. This discussion shows that black hole entropy is just identified with the entropy of the quantum field on the event horizon. The difference from the original brick-wall model is that the present result is convergent without any cutoff and the little mass approximation is removed. With residue theorem, the integral difficulty in the calculation of black hole entropy is overcome.  相似文献   

8.
谢志堃  余国祥  刘成周 《物理学报》2010,59(6):4390-4394
依据全息原理,通过计算Gibbons-Maeda dilaton黑洞事件视界上量子场的统计熵,得到了该黑洞的全息熵和Bekenstein-Hawking熵.计算中利用非对易量子场论,克服了普通量子场论中态密度在视界上的发散困难,避免了黑洞熵热气体方法中紫外截断的引入.用留数定理克服了计算中的积分困难,所得的结果定量成立.研究表明,黑洞熵可以视为其视界上量子场的熵;通过计算视界上量子态的统计熵可以得到黑洞熵,计算中可以且应该避免视界外量子态的影响. 关键词: 黑洞熵 全息原理 事件视界 非对易量子场论  相似文献   

9.
Using the quantum statistical method, the difficulty of solving the wave equation on the background of the black hole is avoided. We directly solve the partition functions of Bose and Fermi field on the background of an axisymmetric Kerr-Newman black hole using the new equation of state density motivated by the generalized uncertainty principle in the quantum gravity. Then near the black hole horizon, we calculate entropies of Bose and Fermi field between the black hole horizon surface and the hypersurface with the same inherent radiation temperature measured by an observer at an infinite distance. In our results there are not cutoffs and little mass approximation introduced in the conventional brick-wall method. The series expansion of the black hole entropy is obtained. And this series is convergent. It provides a way for studying the quantum statistical entropy of a black hole in a non-spherical symmetric spacetime.  相似文献   

10.
The Hawking radiation from charged Kerr black hole via the method beyond semi-classical approximation is studied. In our work, we apply the WKB approximation method and the quantum tunneling method, then calculate the tunneling rate and further correct Hawking entropy to charged Kerr black hole. It is shown that the result is still in agreement with the unitary theory, the entropy of the black hole contains three parts: the usual Bekenstein-Hawking entropy, the logarithmic term and the inverse area term. Apart from coefficients, our correction to the charged Kerr black hole entropy is consistent with results of loop quantum gravity.  相似文献   

11.
Entropy of a Black Hole with Distinct Surface Gravities   总被引:1,自引:0,他引:1  
In gravitational thermodynamics, the entropy of a black hole with distinct surface gravities can be evaluated in a microcanonical ensemble. At the WKB level, the entropy becomes the negative of the Euclidean action of the constrained instanton, which is the seed for the black hole creation in the no-boundary universe. Using the Gauss-Bonnet theorem, we prove the quite universal formula in Euclidean quantum gravity that the entropy of a nonrotating black hole is one quarter the sum of the products of the Euler characteristics and the areas of the horizons. For Lovelock gravity, the entropy and quantum creation of a black hole are also studied.  相似文献   

12.
Recently, there has been much attention devoted to resolving the quantum corrections to the Bekenstein-Hawking black hole entropy. In particular, many researchers have expressed a vested interest in the coefficient of the logarithmic term of the black hole entropy correction term. In this paper, based on the correction to black hole thermodynamic quantity due to the generalized uncertainty principle, we calculate the partition function by energy spectrum obtained using tunneling effect. Furthermore we derive the black hole entropy. In the expression, we not only consider the generalized uncertainty principle but also consider the departure of black hole radiation spectrum from pure thermal spectrum. According to criterion law of thermodynamic systems phase transition, we discuss the phase transition of AdS black hole and derive that the phase transition of AdS black hole is a secondary one.  相似文献   

13.
In this paper we propose a way of determining the subleading corrections to the Bekenstein-Hawking black hole entropy by considering a modified generalized uncertainty principle with two parameters. In the context of modified generalized uncertainty principle, coefficients of the correction terms of black hole entropy are written in terms of combination of the parameters. We also obtained the corrections to the Stefan-Boltzman law and the black hole evaporation in terms of the parameters. By estimating those parameters, say by experiment, one can test results from other context of quantum gravity theories such as black hole entropy.  相似文献   

14.
The Banerjee-Majhi's recent work shows that the Hawking radiation and entropy/area quantum of the black hole horizon (EH) can be well described in the tunneling picture. In this paper, we develop this idea to the case o a de Sitter tunneling from the cosmological horizon (CH), and obtain the Hawking emission spectrum and entropy/area spectroscopy from the CH of the purely de Sitter black hole as well as the Schwarzschild-de Sitter black hole. It i interestingly found that the area of the CH is quantized by A = 4l 2 pl , as was given by Hod for the area quantum of -the EH by considering the Heisenberg uncertainty principle and Schwinger-type emission process. Also, we conclude from our derivation that the entropy/area quantum of the CH is universal in the sense that it is independent of the black hole parameters. This realization implies that, (at least) at a semiclassical level, the de Sitter gravity shares the similar quantum behavior as the usual gravity without presence of a cosmological constant.  相似文献   

15.
16.
The results of loop quantum gravity concerning geometric operators and black hole entropy are beset by an ambiguity labeled by the Immirzi parameter. We use a result from classical gravity concerning the quasinormal mode spectrum of a black hole to fix this parameter in a new way. As a result we arrive at the Bekenstein-Hawking expression of A/4l(2)(P) for the entropy of a black hole and in addition see an indication that the appropriate gauge group of quantum gravity is SO(3) and not its covering group SU(2).  相似文献   

17.
The Banerjee-Majhi's recent work shows that the Hawking radiation and entropy/area quantum of the black hole horizon (EH) can be well described in the tunneling picture. In this paper, we develop this idea to the case of a de Sitter tunneling from the cosmological horizon (CH), and obtain the Hawking emission spectrum and entropy/area spectroscopy from the CH of the purely de Sitter black hole as well as the Schwarzschild-de Sitter black hole. It is interestingly found that the area of the CH is quantized by Δ A=4lpl2, as was given by Hod for the area quantum of -the EH by considering the Heisenberg uncertainty principle and Schwinger-type emission process. Also, we conclude from our derivation that the entropy/area quantum of the CH is universal in the sense that it is independent of the black hole parameters. This realization implies that, (at least) at a semiclassical level, the de Sitter gravity shares the similar quantum behavior as the usual gravity without presence of a cosmological constant.  相似文献   

18.
Based on the ideas of adiabatic invariant quantity, we attempt to quantize the entropy of a charged black hole in de Sitter spacetime in two different coordinates. The entropy spectrum is obtained by imposing Bohr-Sommerfeld quantization rule and the laws of black hole thermodynamics to the modified adiabatic covariant action of the charged black hole. The result shows that the spacing of entropy spectrum is equidistant, and the corresponding horizon area quantum is identical to Bekenstein’s result. Interestingly, in contrast to the quasinormal mode analysis, we note that there is no need to impose the small charge limit for the obtained entropy spectrum of the charged black hole. We also note that the modified adiabatic covariant action gives the same value for the black hole entropy spectrum in different coordinate frames. This is a physically desired result since the entropy spectrum should be invariant under the coordinate transformations.  相似文献   

19.
We consider the generalized second law of black hole thermodynamics in the light of quantum information theory, in particular information erasure and Landauer’s principle (namely, that erasure of information produces at least the equivalent amount of entropy). A small quantum system outside a black hole in the Hartle-Hawking state is studied, and the quantum system comes into thermal equilibrium with the radiation surrounding the black hole. For this scenario, we present a simple proof of the generalized second law based on quantum relative entropy. We then analyze the corresponding information erasure process, and confirm our proof of the generalized second law by applying Landauer’s principle.  相似文献   

20.
There is much interest in resolving the quantum corrections to Bekenstein-Hawking entropy with a large length scale limit. The leading correction term is given by the logarithm of black hole area with a model-dependent coefficient. Recently the research for quantum gravity implies the emergence of a modification of theenergy-momentum dispersion relation (MDR), which plays an importantrole in the modified black hole thermodynamics. In this paper, we investigate the quantum corrections to Bekenstein-Hawking entropy in four-dimensional Schwarzschild black hole and Reissner-Nordström black hole respectively based on MDR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号