首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[W(H)(NO)(PMe3)4] (1) was prepared by the reaction of [W(Cl)(NO)(PMe3)4] with NaBH4 in the presence of PMe3. The insertion of acetophenone, benzophenone and acetone into the W-H bond of 1 afforded the corresponding alkoxide complexes [W(NO)(PMe3)4(OCHR1R2)](R1 = R2 = Me (2); R1 = Me, R2 = Ph (3); R1 = R2 = Ph (4)), which were however thermally unstable. Insertion of CO2 into the W-H bond of yields the formato-O complex trans-W(NO)(OCHO)(PMe3)4 (5). Reaction of trans-W(NO)(H)(PMe3)4 with CO led to the formation of mer-W(CO)(NO)(H)(PMe3)3 (6) and not the formyl complex W(NO)(CHO)(PMe3)4. Insertion of Fe(CO)(5), Re2(CO)10 and Mn2(CO)10 into trans-W(NO)(H)(PMe3)4 resulted in the formation of trans-W(NO)(PMe3)4(mu-OCH)Fe(CO)4 (7), trans-W(NO)(PMe3)4(mu-OCH)Re2(CO)9 (8) and trans-W(NO)(PMe3)4(mu-OCH)Mn2(CO)9 (9). For Re2(CO)10, an equilibrium was established and the thermodynamic data of the equilibrium reaction have been determined by a variable-temperature NMR experiments (K(298K)= 104 L mol(-1), DeltaH=-37 kJ mol(-1), DeltaS =-86 J K(-1) mol(-1)). Both compounds 7 and 8 were separated in analytically pure form. Complex 9 decomposed slowly into some yet unidentified compounds at room temperature. Insertion of imines into the W-H bond of 1 was also additionally studied. For the reactions of the imines PhCH=NPh, Ph(Me)C=NPh, C6H5CH=NCH2C6H5, and (C6H5)2C=NH with only decomposition products were observed. However, the insertion of C10H7N=CHC6H5 into the W-H bond of led to loss of one PMe3 ligand and at the same time a strong agostic interaction (C17-H...W), which was followed by an oxidative addition of the C-H bond to the tungsten center giving the complex [W(NO)(H)(PMe3)3(C10H6NCH2Ph)] (10). The structures of compounds 1, 4, 7, 8 and 10 were studied by single-crystal X-ray diffraction.  相似文献   

2.
DFT(B3PW91) calculations have been carried out to rationalise the structural, electronic and spectroscopic properties of Mo and W imido M(NR1)(CHR2)(X)(Y) olefin metathesis catalysts by using either simplified or actual ligands of the experimental complexes. The calculated structures, energetics (preference for the syn isomer and alkylidene rotational barrier for the syn/anti interconversion), and spectroscopic properties (NMR J(C-H) coupling constants) are in good agreement with available experimental data. Additionally, the alkylidene nu(C-H) stretching frequencies, not available experimentally, have been calculated. These quasi-tetrahedral complexes have a linear imido group and a C-H alkylidene agostic interaction, which stabilizes the syn isomer. Whether looking at M(NR1)(CHR2)(X)(Y), M = Mo, W, or the isolobal Re complexes, Re(CR1)(CHR2)(X)(Y), a linear correlation is obtained between both the alkylidene nu(C-H) stretching frequencies and J(C-H) coupling constants with the calculated alkylidene C-H bond lengths. These correlations show that the strength of the alpha-C-H agostic interaction increases from alkylidyne Re to imido group 6 complexes and from Mo to W. The NBO and AIM Bader analyses show firstly that the imido and alkylidyne groups are both triply bonded to the metal, but that the triply bonded imido ligand is a weaker electron donor than the alkylidyne, hence the stronger alpha-C-H agostic interaction for group 6 imido complexes. Secondly, one of the pi bonds of the triply bonded ligand is weakened at the transition state of the alkylidene rotation: while no lone pair is formed, the metal-ligand triple bond is polarized. This is more favourable for an imido than for an alkylidyne ligand, hence the lower alkylidene rotational barrier for the former complexes. Conversely, the aryl imido is even less of an electron donor than the alkyl imido group, which in turn strengthens the alpha-C-H agostic interaction and lowers the alkylidene rotational barrier even more.  相似文献   

3.
The factors controlling both the binding of small molecules to several tungsten complexes and agostic bonding in the W(CO)3(PCy3)2 complex have been examined through B3LYP hybrid density functional theory and ab initio MP2 calculations with and without basis set superposition error (BSSE) corrections. This approach attempts to isolate insofar as possible the separate effects of intrinsic bonding interactions, electron induction by ligands, and steric hindrance and strain. An important conclusion from this study is that for bimolecular reactions, BSSE corrections must be included for quantitative predictions. There is a reasonably good correlation between the BSSE-corrected B3LYP and MP2 results for bond dissociation enthalpies (BDEs) of very small molecules (H2, N2, and CO), but generally B3LYP BDEs tend to be smaller than the corresponding MP2 values. In the few cases where a comparison with experimental data can be appropriately made, it appears that the BSSE-corrected MP2 BDEs are more reliable. Using N2 as a probe molecule, the strength of the agostic bond in W(CO)3(PCy3)2 has been examined by calculating the BDE of N2 in a series of tungsten complexes with increasing electron inducing effect without agostic bonding, then extrapolating the expected trend to the case of agostically bonded W(CO)3(PCy3)2. Comparison of the extrapolated value to the calculated BDE of W(CO)3(PCy3)2(N2) yields an estimated strength of the agostic bond of from 7 to 9 kcal mol-1. Approximately 5 kcal mol-1 of the interaction is assigned to the net agostic interaction associated with moving from a nonagostic local minimum configuration of the PCy3 ligands to the agostically bonded global minimum.  相似文献   

4.
The aryl-PC type ligand 3, benzyl(di-tert-butyl)phosphane, reacts with [Rh(coe)(2)(solv)(n)()]BF(4) (coe = cyclooctene, solv = solvent), producing the C-H activated complexes 4a-c (solv = (a). acetone, (b). THF, (c). methanol). Complexes 4a-c undergo reversible arene C-H activation (observed by NMR spin saturation transfer experiments, SST) and H/D exchange into the hydride and aryl ortho-H with ROD (R = D, Me). They also promote catalytic H/D exchange into the vinylic C-H bond of olefins, with deuterated methanol or water utilized as D-donors. Unexpectedly, complex 2, based on the benzyl-PC type ligand 1 (analogous to 3), di-tert-butyl(2,4,6-trimethylbenzyl)phosphane, shows a very different reversible C-H activation pattern as observed by SST. It is not active in H/D exchange with ROD and in catalytic H/D exchange with olefins. To clarify our observations regarding C-H activation/reductive elimination in both PC-Rh systems, density functional theory (DFT) calculations were performed. Both nucleophilic (oxidative addition) and electrophilic (H/D exchange) C-H activation proceed through eta(2)-C,H agostic intermediates. In the aryl-PC system the agostic interaction causes C-H bond acidity sufficient for the H/D exchange with water or methanol, which is not the case in the benzyl PC-Rh system. In the latter system the C-H coordination pattern of the methyl controls the reversible C-H oxidative addition leading to energetically different C-H activation processes, in accordance with the experimental observations.  相似文献   

5.
Addition of H2 (4 atm at 298 K) to [Rh(nbd)(PR3)2][BAr(F)4] [R = Cy, iPr] affords Rh(III) dihydride/dihydrogen complexes. For R = Cy, complex 1a results, which has been shown by low-temperature NMR experiments to be the bis-dihydrogen/bis-hydride complex [Rh(H)2(eta2-H2)2(PCy3)2][BAr(F)4]. An X-ray diffraction study on 1a confirmed the {Rh(PCy3)2} core structure, but due to a poor data set, the hydrogen ligands were not located. DFT calculations at the B3LYP/DZVP level support the formulation as a Rh(III) dihydride/dihydrogen complex with cis hydride ligands. For R = iPr, the equivalent species, [Rh(H)2(eta2-H2)2(P iPr3)2][BAr(F)4] 2a, is formed, along with another complex that was spectroscopically identified as the mono-dihydrogen, bis-hydride solvent complex [Rh(H)2(eta2-H2)(CD2Cl2)(P iPr3)2][BAr(F)4] 2b. The analogous complex with PCy3 ligands, [Rh(H)2(eta2-H2)(CD2Cl2)(PCy3)2][BAr(F)4] 1b, can be observed by reducing the H2 pressure to 2 atm (at 298 K). Under vacuum, the dihydrogen ligands are lost in these complexes to form the spectroscopically characterized species, tentatively identified as the bis hydrides [Rh(H)2(L)2(PR3)2][BAr(F)4] (1c R = Cy; 2c R = iPr; L = CD2Cl2 or agostic interaction). Exposure of 1c or 2c to a H2 atmosphere regenerates the dihydrogen/bis-hydride complexes, while adding acetonitrile affords the bis-hydride MeCN adduct complexes [Rh(H)2(NCMe)2(PR3)2][BAr(F)4]. The dihydrogen complexes lose [HPR3][BAr(F)4] at or just above ambient temperature, suggested to be by heterolytic splitting of coordinated H2, to ultimately afford the dicationic cluster compounds of the type [Rh6(PR3)6(mu-H)12][BAr(F)4]2 in moderate yield.  相似文献   

6.
The unsaturated complexes [W2Cp2(mu-PR2)(mu-PR'2)(CO)2] (Cp = eta5-C5H5; R = R' = Ph, Et; R = Et, R' = Ph) react with HBF4.OEt2 at 243 K in dichloromethane solution to give the corresponding complexes [W2Cp2(H)(mu-PR2)(mu-PR'2)(CO)2]BF4, which contain a terminal hydride ligand. The latter rearrange at room temperature to give [W2Cp2(mu-H)(mu-PR2)(mu-PR'2)(CO)2]BF4, which display a bridging hydride and carbonyl ligands arranged parallel to each other (W-W = 2.7589(8) A when R = R' = Ph). This explains why the removal of a proton from the latter gives first the unstable isomer cis-[W2Cp2(mu-PPh2)2(CO)2]. The molybdenum complex [Mo2Cp2(mu-PPh2)2(CO)2] behaves similarly, and thus the thermally unstable new complexes [Mo2Cp2(H)(mu-PPh2)2(CO)2]BF4 and cis-[Mo2Cp2(mu-PPh2)2(CO)2] could be characterized. In contrast, related dimolybdenum complexes having electron-rich phosphide ligands behave differently. Thus, the complexes [Mo2Cp2(mu-PR2)2(CO)2] (R = Cy, Et) react with HBF4.OEt2 to give first the agostic type phosphine-bridged complexes [Mo2Cp2(mu-PR2)(mu-kappa2-HPR2)(CO)2]BF4 (Mo-Mo = 2.748(4) A for R = Cy). These complexes experience intramolecular exchange of the agostic H atom between the two inequivalent P positions and at room-temperature reach a proton-catalyzed equilibrium with their hydride-bridged tautomers [ratio agostic/hydride = 10 (R = Cy), 30 (R = Et)]. The mixed-phosphide complex [Mo2Cp2(mu-PCy2)(mu-PPh2)(CO)2] behaves similarly, except that protonation now occurs specifically at the dicyclohexylphosphide ligand [ratio agostic/hydride = 0.5]. The reaction of the agostic complex [Mo2Cp2(mu-PCy2)(mu-kappa2-HPCy2)(CO)2]BF4 with CN(t)Bu gave mono- or disubstituted hydride derivatives [Mo2Cp2(mu-H)(mu-PCy2)2(CO)2-x(CNtBu)x]BF4 (Mo-Mo = 2.7901(7) A for x = 1). The photochemical removal of a CO ligand from the agostic complex also gives a hydride derivative, the triply bonded complex [Mo2Cp2(H)(mu-PCy2)2(CO)]BF4 (Mo-Mo = 2.537(2) A). Protonation of [Mo2Cp2(mu-PCy2)2(mu-CO)] gives the hydroxycarbyne derivative [Mo2Cp2(mu-COH)(mu-PCy2)2]BF4, which does not transform into its hydride isomer.  相似文献   

7.
Based on the PCN ligand 2, a remarkable degree of control over C-C versus C-H bond activation and versus formation of an agostic C-C complex was demonstrated by choice of cationic [Rh(CO)(n)(C(2)H(4))(2-n)] (n=0, 1, 2) precursors. Whereas reaction of 2 with [Rh(C(2)H(4))(2)(solv)(n)]BF(4) results in exclusive C-C bond activation to yield product 5, reaction with the dicarbonyl precursor [Rh(CO)(2)(solv)(n)]BF(4) leads to formation of the C-H activated complex 9. The latter process is promoted by intramolecular deprotonation of the C-H bond by the hemilabile amine arm of the PCN ligand. The mixed monocarbonyl monoethylene Rh species [Rh(CO)(C(2)H(4))]BF(4) reacts with the PCN ligand 2 to give an agostic complex 7. The C-C activated complex 5 is easily converted to the C-H activated one (9) by reaction with CO; the reaction proceeds by a unique sequence of 1,2-metal-to-carbon methyl shift, agostic interaction, and C-H activation processes. Similarly, the C-C agostic complex 7 is converted to the same C-H activated product 9 by treatment with CO.  相似文献   

8.
The complex Zr(9-BBN)4 [9-BBN = (mu-H)2BC8H14] has been synthesized via the reaction of K(9-BBN) with ZrCl4 in diethyl ether. The structure of the title compound has been determined by X-ray and neutron single-crystal diffraction techniques. Each 9-BBN ligand is coordinated to the Zr atom via two B-H-Zr bridges, and these metal-ligand bonding interactions are further augmented by three prominent C-H...Zr agostic interactions. Average molecular parameters derived from the neutron analysis: Zr-H = 2.051(8) A, B-H = 1.286(7) A, Zr...B = 2.409(6) A, Zr-H-B = 87.7(4) degrees , H-Zr-H = 58.9(3) degrees . The Zr...H distances corresponding to the three C-H...Zr agostic interactions are 2.424(7), 2.663(8), and 2.551(7) A. The fourth potential C-H...Zr interaction has a Zr...H distance [3.146(7) A] that is too long to be considered in the agostic range. Single-crystal X-ray diffraction data were collected on an Enraf-Nonius Kappa CCD diffraction system, and neutron diffraction data were collected on the quasi-Laue diffractometer VIVALDI at the Institut Laue-Langevin; the final agreement factor for the neutron analysis is 6.52% for 2557 reflections with I > 2sigma(I).  相似文献   

9.
The phosphinosilane compound PPh 2CH 2OSiMe 2H is potentially a bifunctional P approximately Si-H ligand. By treatment with the Ru (II) precursor RuH 2(H 2) 2(PCy 3) 2, the complex Ru(PPh 2CH 2OSiMe 2H) 3 ( 2), resulting from the coordination of three ligands and the displacement of two PCy 3 and two dihydrogen ligands, was formed. The different bonding modes for each of the three bifunctional P approximately Si-H ligands are discussed on the basis of multinuclear NMR, X-ray diffraction, and density functional theory studies. One ligand acts as a monodentate phosphine ligand with a pendant Si-H group, whereas the two others act as bidentate ligands with different Si-H bond activations. Indeed, an intermediate structure between two arrested forms 2a and 2b can be proposed: a dihydrido(disilyl)ruthenium(IV) species (form 2a) resulting from two Si-H oxidative additions or a hydrido(silyl)ruthenium(II) species (form 2b) presenting an agostic Si-H bond and only one oxidative addition.  相似文献   

10.
The photodissociation dynamics of CpCo(CO)(2) was studied in a molecular beam using photofragment translational energy spectroscopy with 157 nm photoionization detection of the metallic products. At 532 and 355 nm excitation, the dominant one-photon channel involved loss of a single CO ligand producing CpCoCO. The product angular distributions were isotropic, and a large fraction of excess energy appeared as product vibrational excitation. Production of CpCO + 2CO resulted from two-photon absorption processes. The two-photon dissociation of mixtures containing CpCo(CO)(2) and H(2) at the orifice of a pulsed nozzle was used to produce a novel 16-electron unsaturated species, CpCoH(2). Transition metal ligand exchange reactions, CpCoH(2) + L → CpCoL + H(2) (L = propyne, propene, or ammonia), were studied under single-collision conditions for the first time. In all cases, ligand exchange occurred via 18-electron association complexes with lifetimes comparable to their rotational periods. Although ligand exchange reactions were not detected from CpCoH(2) collisions with methane or propane (L = CH(4) or C(3)H(8)), a molecular beam containing CpCoCH(4) was produced by photolysis of mixtures containing CpCo(CO)(2) and CH(4).  相似文献   

11.
1J(H-D), T(1min) and k(1) for H(2) dissociation from OsHX(H(2))(CO)L(2) have been measured for X = Cl, I, H (L = P(t-Bu)(2)Me or P(i-Pr)(3)), as well as for OsCl(2)(H(2))(CO)(P(i-Pr)(3))(2). For comparison, new data (including previously unobserved coupling constants) have been reported for W(HD)(CO)(3)(P(i-Pr)(3))(2). A comprehensive consideration of T(1min) data for over 20 dihydrogen complexes containing only 1-2 phosphines cis to H(2), together with a consideration of the shortest "conceivable" H-H distance for H(2) bound to a d(4) or d(6) metal, is used to argue that the "fast spinning" model is not appropriate for determining r(H-H) in such complexes. Regarding OsHX(H(2))(CO)L(2), the stronger electron-donor (lighter) halide, when cis to H(2), facilitates loss of H(2). The complete absence of pi-donor ability when X = H renders H(2) loss most difficult. However, a pi-donor trans to H(2) also makes H(2) loss unobservable. Within the series of isoelectronic, structurally analogous Os complexes, a longer H-H bond shows a larger DeltaG() for H(2) loss. However, this correlation does not continue to W(H(2))(CO)(3)(P(i-Pr)(3))(2), which has r(H-H) comparable to that of OsH(halide)(H(2))(CO)(P(i-Pr)(3))(2), but a significantly higher DeltaG(). This may originate from lack of a pi-donor ligand to compensate as H(2) leaves W.  相似文献   

12.
The bis(dihydrogen) complex RuH(2)(H(2))(2)(PCy(3))(2) (1) reacts with 2-phenyl-3,4-dimethylphosphaferrocene (L(1)) to give RuH(2)(H(2))(PCy(3))(2)(L(1)) (2). This dihydride-dihydrogen complex has been characterized by X-ray crystallography and variable-temperature (1)H and (31)P NMR spectroscopy. The exchange between the dihydrogen ligand and the two hydrides is characterized by a DeltaG() of 46.2 kJ/mol at 263 K. H/D exchange is readily observed when heating a C(7)D(8) solution of 2 (J(H-D) = 30 Hz). The H(2) ligand in 2 can be displaced by ethylene or carbon monoxide leading to the corresponding ethylene or carbonyl complexes. The reaction of 1 with 2 equiv of 3,4-dimethylphosphaferrocene (L(2)) yields the dihydride complex RuH(2)(PCy(3))(2)(L(2))(2) (5).  相似文献   

13.
The photochemical reaction of Ru(CO)(3)(L)(2), where L = PPh(3), PMe(3), PCy(3) and P(p-tolyl)(3) with parahydrogen (p-H(2)) has been studied by in-situ NMR spectroscopy and shown to result in two competing processes. The first of these involves loss of CO and results in the formation of the cis-cis-trans-L isomer of Ru(CO)(2)(L)(2)(H)(2), while in the second, a single photon induces loss of both CO and L and leads to the formation of cis-cis-cis Ru(CO)(2)(L)(2)(H)(2) and Ru(CO)(2)(L)(solvent)(H)(2) where solvent = toluene, THF and pyridine (py). In the case of L = PPh(3), cis-cis-trans-L Ru(CO)(2)(L)(2)(H)(2) is shown to be an effective hydrogenation catalyst with rate limiting phosphine dissociation proceeding at a rate of 2.2 s(-1) in pyridine at 355 K. Theoretical calculations and experimental observations show that H(2) addition to the Ru(CO)(2)(L)(2) proceeds to form cis-cis-trans-L Ru(CO)(2)(L)(2)(H)(2) as the major product via addition over the pi-accepting OC-Ru-CO axis.  相似文献   

14.
The compound [1-SMe2-2,2-(CO)2-7,11-(mu-H)2-2,7,11-{Ru2(CO)6}-closo-2,1-RuCB10H8] 1a reacts with PMe3 or PCy3(Cy = cyclo-C6H11) to give the structurally different species [1-SMe2-2,2-(CO)2-7,11-(mu-H)2-2,7,11-{Ru2(CO)5(PMe3)}-closo-2,1-RuCB10H8] 4 and [1-SMe2-2,2-(CO)2-11-(mu-H)-2,7,11-{Ru2(mu-H)(CO)5(PCy3)}-closo-2,1-RuCB10H8]5, respectively. A symmetrically disubstituted product [1-SMe2-2,2-(CO)2-7,11-(mu-H)2-2,7,11-{Ru2(CO)4(PMe3)2}-closo-2,1-RuCB10H8] 6 is obtained using an excess of PMe3. In contrast, the chelating diphosphines 1,1'-(PPh2)2-Fe(eta-C5H4)2 and 1,2-(PPh2)2-closo-1,2-C2B10H10 react with 1a to yield oxidative-insertion species [1-SMe2-2,2-(CO)2-11-(mu-H)-2,7,11-{Ru2(mu-H)(micro-[1',1'-(PPh2)2-Fe(eta-C5H4)2])(CO)4}-closo-2,1-RuCB10H8] 7 and [1-SMe2-2,2-(CO)2-11-(mu-H)-2,7,11-{Ru2(mu-H)(CO)4(1',2'-(PPh2)2-closo-1',2'-C2B10H10)}-closo-2,1-RuCB10H8] 8, respectively. In toluene at reflux temperatures, 1a with Bu(t)SSBu(t) gives [1-SMe2-2,2-(CO)2-7-(mu-SBu(t))-11-(mu-H)-2,7,11-{Ru2(mu-H)(mu-SBu(t))(CO)4}-closo-2,1-RuCB10H8] 9, and with Bu(t)C [triple bond] CH gives [1-SMe2-2,2-(CO)2-7-{mu:eta2-(E)-CH=C(H)Bu(t)}-11-{mu:eta2-(E)-CH=C(H)Bu(t)}-2,7,11-{Ru2(CO)5}-closo-2,1-RuCB10H8] 10. In the latter, two alkyne groups have inserted into cage B-H groups, with one of the resulting B-vinyl moieties involved in a C-H...Ru agostic bond. Oxidation of 1a with I2 or HgCl2 affords the mononuclear ruthenium complex [1-SMe2-2,2,2-(CO)3-closo-2,1-RuCB10H10] 11.  相似文献   

15.
Single-crystal neutron diffraction, inelastic neutron scattering, and density functional calculations provide experimental and theoretical analyses of the nature of the osmium-bound, "elongated" dihydrogen ligands in [Cp*OsH(4)(L)][BF(4)] complexes (L = PPh(3), AsPh(3), or PCy(3)). The PPh(3) and AsPh(3) complexes clearly contain one dihydrogen ligand and two terminal hydrides; the H(2) ligand is transoid to the Lewis base, and the H-H vector connecting the central two hydrogen atoms lies parallel to the Ct-Os-L plane (Ct = centroid of Cp* ring). In contrast, in the PCy(3) complex the H-H vector is perpendicular to the Ct-Os-L plane. Not only the orientation of the central two hydrogen atoms but also the H-H bond length between them depends significantly on the nature of L: the H...H distance determined from neutron diffraction is 1.01(1) and 1.08(1) A for L = PPh(3) and AsPh(3), respectively, but 1.31(3) A for L = PCy(3). Density functional calculations show that there is a delicate balance of electronic and steric influences created by the L ligand that change the molecular geometry (steric interactions between the Cp* and L groups most importantly change the Ct-Os-L angle), changing the relative energy of the Os 5d orbitals, which in turn govern the H-H distance, preferred H-H orientation, and rotational dynamics of the elongated dihydrogen ligand. The geometry of the dihydrogen ligand is further tuned by interactions with the BF(4)(-) counterion. The rotational barrier of the bound H(2) ligand in [Cp*OsH(4)(PPh(3))](+), determined experimentally (3.1 kcal mol(-)(1)) from inelastic neutron scattering experiments, is in reasonable agreement with the B3LYP calculated H(2) rotational barrier (2.5 kcal mol(-)(1)).  相似文献   

16.
Eleven organic Lewis bases were investigated as potential ligands (L) on W(6)S(8)L'(6) clusters by exploring ligand exchange reactions to form W(6)S(8)L(6) clusters. Six new homoleptic W(6)S(8)L(6) cluster complexes were prepared and characterized with L = tri-n-butylphosphine (P(n)Bu(3)), triphenylphosphine (PPh(3)), tert-butylisocyanide ((t)BuNC), morpholine, methylamine (MeNH(2)), and tert-butylamine ((t)BuNH(2)). While partial replacement of ligands occurred with diethylamine (Et(2)NH) and dibutylamine (Bu(2)NH), homoleptic clusters could not be prepared by these exchange reactions. When aniline, tribenzylamine, and tri-tert-butylphosphine were the potential ligands, no exchange was observed. From ligand exchange studies of these ligands and others previously studied, a thermodynamic series of binding free energies for ligands on W(6)S(8)L(6) clusters was established as the following: non-Lewis base solvents, aniline, P(t)()Bu(3), etc. < Et(2)NH, Bu(2)NH < (t)BuNH(2) < morpholine, piperidine < or = (n)BuNH(2), MeNH(2) < or = 4-tert-butylpyridine, pyridine < (t)BuNC < tricyclohexylphosphine (PCy(3)) < PPh(3), P(n)Bu(3) < or = triethylphosphine (PEt(3)). Structures of the new cluster complexes were determined by X-ray crystallography. The new compounds were also characterized by NMR spectroscopy and thermogravimetric analyses (TGA). The W-L bond orders and TGA data qualitatively agree with the thermodynamic series above.  相似文献   

17.
The syntheses and spectroscopic characterization of two 1,2,4-triazole-based oxovanadium(V) complexes are reported: 1- [VO2L1]- and 2 [(VOL2)2(OMe)2] (where H2L1 = 3-(2'-hydroxyphenyl)-5-(pyridin-2' '-yl)-1H-1,2,4-triazole, H3L2 = bis-3,5-(2'-hydroxyphenyl)-1H-1,2,4-triazole). The ligand environment (N,N,O vs O,N,O) is found to have a profound influence on the properties and reactivity of the complexes formed. The presence of the triazolato ligand allows for pH tuning of the spectroscopic and electrochemical properties, as well as the interaction and stability of the complexes in the presence of hydrogen peroxide. The vanadium(IV) oxidation states were generated electrochemically and characterized by UV-vis and EPR spectroscopies. For 2, under acidic conditions, rapid exchange of the methoxide ligands with solvent [in particular, in the vanadium(IV) redox state] was observed.  相似文献   

18.
The reactivity of the (o-phosphinophenyl)(amino)borane compound HB(N(i)Pr(2))C(6)H(4)(o-PPh(2)) prepared from Li(C(6)H(4))PPh(2) and HBCl(N(i)Pr(2)) toward the bis(dihydrogen) complex RuH(2)(H(2))(2)(PCy(3))(2) (1) was studied by a combination of DFT, X-ray, and multinuclear NMR techniques including solid-state NMR, a technique rarely employed in organometallic chemistry. The study showed that the complex RuH(2){HB(N(i)Pr(2))C(6)H(4)(o-PPh(2))}(PCy(3))(2) (3), isolated in excellent yield as yellow crystals and characterized by X-ray diffraction, led in solution to PCy(3) dissociation and formation of an unsaturated 16-electron complex RuH(2){HB(N(i)Pr(2))C(6)H(4)(o-PPh(2))}(PCy(3)) (4), with a hydride trans to a vacant site. In both cases, the (phosphinoaryl)(amino)borane acts as a bifunctional ligand through the phosphine moiety and a Ru-H-B interaction, thus featuring an agostic interaction.  相似文献   

19.
Tungsten-183 NMR data are reported for the complexes cis- and trans-[W(CO)4(PPh3)(PR3)] (PR3 = PnBu3, PMe3, PMe2Ph, PMePh2, PPh3, P(4-C6H4OMe)3, P(4-C6H4Me)3, P(4-C6H4F)3, P(OMe)3, P(OEt)3, P(OPh)3 and for PCy3, P(NMe2)3(trans isomer only). The 183W chemical shift (obtained by indirect detection using 31P) is found to be related to the PR3 ligand parameters nu and theta (Tolman electronic factor and cone angle, respectively) for the cis isomers and to nu (but only poorly to theta) for the trans isomers. The 183W-31P spin coupling constant is also related, less clearly for P-C than for P-N and P-O bonded ligands, to nu. Chemical shifts are referenced to an absolute frequency Xi (183W) = 4.15 MHz, which is proposed as a calibration standard for 183W NMR. The structures of cis-[W(CO)4(PPh3)(PMe3)] and cis-[W(CO)4(PPh3){P(4-C6H4F)3}] are reported.  相似文献   

20.
Reaction of U(NEt(2))(4) with HS-2,4,6-(t)Bu(3)C(6)H(2) (HSMes) gave U(SMes)(3)(NEt(2))(py) (1), whereas similar treatment of U[N(SiMe(3))SiMe(2)CH(2)][N(SiMe(3))(2)](2) afforded U(SMes)[N(SiMe(3))(2)](3) (2) and U(SMes)(3)[N(SiMe(3))(2)]. The first neutral homoleptic uranium(IV) thiolate to have been crystallographically characterized, U(SMes)(4) (4), was isolated from the reaction of U(BH(4))(4) and KSMes. The first homoleptic thiolate complex of uranium(III), U(SMes)(3) (5), was synthesized by protonolysis of U[N(SiMe(3))(2)](3) with HSMes in cyclohexane. The crystal structure of 5 exhibits the novel eta(3) ligation mode for the arylthiolate ligand. Comparison of the crystal structure of 5 with those of the isomorphous lanthanide congeners Ln(SMes)(3) (Ln = La, Ce, Pr, and Nd) indicates that the U-S, U-C(ipso)(), and U-C(ortho)() bond lengths are shorter than the corresponding ones in the 4f-element analogues, when taking into account the variation in the ionic radii of the metals. The distance between the uranium and the carbon atoms involved in the U...H-C epsilon agostic interaction of each thiolate ligand is shorter, by approximately 0.05 A, than that expected from a purely ionic bonding model. The lanthanide(III)/actinide(III) differentiation was analyzed by density functional theory (DFT). The nature of the M-S bond is shown to be ionic strongly polarized at the sulfur for M = U and iono-covalent (i.e. strongly ionic with low orbital interaction), for M = Ln. The strength of the U...H-C epsilon agostic interaction is proposed to be controlled by the maximization of the interaction between U(+) and S(-) under steric constraints. The eta(3) ligation mode of the arylthiolate ligand is also obtained from DFT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号