共查询到20条相似文献,搜索用时 15 毫秒
1.
以聚乙烯合丁烯-嵌-聚氧乙烯嵌段共聚物(PHB-PEO)作模板, 采用蒸发诱导自组装方法, 分别制备了Y2O3和Nd2O3介孔薄膜. 用小角、广角X射线衍射和透射电子显微镜对薄膜样品在不同的热处理阶段进行了表征. 结果表明, 所制备的Y2O3和Nd2O3薄膜样品呈现一种大孔径(平均孔径分别约为11.5和12.5 nm)、有序的立方扭曲球形孔排列、稳定于450 ℃并具有部分晶态孔壁结构的介孔薄膜材料. 相似文献
2.
等离子体协同CuO/TiO2-γ-Al2O3催化CH4脱除NO 总被引:3,自引:0,他引:3
对合成的12%CuO/15%TiO2/γ-Al2O3催化剂进行了BET和XRD表征, 并结合等离子体与催化协同脱除NO的反应装置, 考察了单一等离子体、单一催化剂以及等离子体与催化协同脱除NO+CH4+O2的反应结果, 研究了上述三种条件下NO和CH4的转化率. BET表征结果表明, 15%TiO2/γ-Al2O3的孔径分布在微孔和介孔之间; XRD结果表明, 催化剂表面有CuO晶相; 反应活性数据表明, 单一等离子体存在时, NO和CH4的转化率随着等离子体的输入功率增大而逐渐增加, 反应体系引入体积分数为2.5%的O2气促进了NO和CH4的转化; 使用单一催化剂时, NO和CH4的转化率随温度升高而分别增大至30%和20%. 同时NO转化率随O2气浓度的增加先增加后降低, CH4随O2气浓度的增加转化率逐渐增大; 等离子体与催化剂协同作用NO+CH4+O2反应中, NO和CH4的转化率随O2气浓度的增加与只有催化剂存在条件下的变化趋势一致, 但是增大了NO的低温转化率, 同时CH4的转化率提高到了90%. 相似文献
3.
贯通孔道网络结构大孔Al2O3催化材料的制备 总被引:2,自引:0,他引:2
采用模板法制备了具有贯通孔道网络结构的大孔Al2O3催化材料. 为确保模板材料的体积分数低于74%时Al2O3孔道的贯通, 设计并实现了模板聚苯乙烯(PS)微球先胶凝再与催化材料Al2O3纳米颗粒复合的制备路线. 通过PS微球悬浮液的流变性表征凝胶状态的形成. 实验结果表明, 加入适当浓度的硝酸铝溶液后PS微球悬浮液出现了由溶胶向凝胶的转变. 通过扫描电镜对大孔Al2O3催化材料的孔道结构进行表征, 结果表明, 与有序大孔材料相比大孔催化材料中孔配位数有所降低, 骨架厚度提高且具有贯通的孔道网络结构. 大孔结构抗压强度实验表明, 随着模板PS微球质量分数的降低, 机械强度明显提高. 相似文献
4.
使用漫反射傅里叶变换红外光谱(DRIFTS)原位反应器研究了273~333 K下甲醛与α-Al2O3颗粒物表面的非均相反应. 结果表明, 甲醛在α-Al2O3颗粒物表面生成产物主要为甲酸盐、二氧亚甲基以及少量多聚甲醛和吸附态甲醛, 甲酸盐是由中间产物二氧亚甲基进一步氧化生成的. 在293 K下, 甲醛在α-Al2O3颗粒物表面的反应级数为0.81±0.05, 以样品池几何面积计算的初始摄取系数γ0GEO为(2.3±0.5)×10-5, 以颗粒物BET面积计算的初始摄取系数γ0BET为(9.4±1.7)×10-9, 表观活化能为33.5 kJ/mol. 相似文献
5.
氧化镍(NiO)与γ-Al2O3载体间的相互作用 总被引:2,自引:0,他引:2
在一定实验条件下(焙烧温度<773K),NiO与γ-Al_2O_3之间发生强相互作用而使得Ni(Ⅱ)难以被H_2所还原.其实质是Ni(Ⅱ)进入了γ-Al_2O_3表面层上的四、六配位空位.按作者提出的掺入模型进行计算,实验也证实随着负载量增加表面空位均被Ni(Ⅱ)占据之后,过量NiO就以晶态附着在表面上.在有NiO晶相出现时,经873K以上高温处理,Ni(Ⅱ)、Al(Ⅲ)间的相互扩散导致在NiO微晶上形成类似非计量的NiAl_2O_4.扩散作用随预处理温度提高而加剧,最终形成结构较为完整的NiAl_2O_4尖晶石.与γ-Al_2O_3发生强相互作用的NiO也随之而增多.焙烧温度、负载量是影响相互作用的重要因素。 相似文献
6.
以Fe2O3为铁源原料, 利用热还原法成功地制备了LiFePO4/C复合材料. 用XRD以及SEM对材料的晶体结构以及表面形貌进行了表征. 通过循环伏安和充放电测试研究了材料的电化学性能. 研究结果表明, 于700 ℃下制备的LiFePO4/C复合材料在0.1C的倍率下可以得到放电容量144.8 mA·h/g, 在循环160次后, 容量仍保持在141.4 mA·h/g. 这种以廉价的Fe2O3代替目前常用的二价铁盐原料方法, 具有减少LiFePO4合成成本的优点. 相似文献
7.
8.
Nd_2O_3·BaO·Al_2O_3·6B_2O,晶体属六方晶体系,空间群为D_h-P62m晶胞参数a=4.566(2)A.Z=24.92(1)A,Z=1。由PW1100四园衍射仪收集到1460个独立衍射强度,用SNELX-76程序中的直接法解得晶体结构,全矩阵最小二乘方法修正结构参数,最后得到偏离因子R=8.80%(未校正吸收),全部计算在SORDCP/M-68K微处理机上完成,晶胞中2/3的B原于位于四面体内,形成[B_2O_5]~4-团,另外1/3的B原子,连结33个O原子形成[B_2O_3]中性团。由对称面联系的[B_2O_3]团的B与B原子之间借助范德华键键合,结构上的这一特点,与硼酸铝钡钕晶体垂直C轴方向有明显解理性质完成一致。这一晶体的结构式可表示为Nd_2BaAl_2O_(1-x)[B_2O_5]_4[B_4O_(4+x+(2-x))] 相似文献
9.
在表面活性剂辅助的水热条件下合成出尺寸均一的Gd2O3∶Eu3+纳米棒, 对其结构和荧光性质进行了表征, 并对其生长机理进行了初步讨论. XRD结果表明, 水热前驱体样品为六方晶相的Gd(OH)3, 经过灼烧之后样品为立方相的Gd2O3. TEM照片表明, 所得样品为直径60 nm、长度约600 nm的纳米棒. 荧光光谱表明, 在波长为254 nm 的紫外光激发下, Gd2O3∶Eu3+纳米棒产生了不同于前驱体的特征红光发射, 对应于Eu3+ 的5D0-7F2跃迁, 表明Gd2O3是红色发光材料的良好基质. 相似文献
10.
在纳米级Fe3O4作为种子, 过量的盐酸羟胺为还原剂的条件下, 将Au3+在分散于水相中的Fe3O4胶态种子表面还原为Au0, 得到核壳结构, 粒径为170 nm左右的Fe3O4/Au磁性复合微粒, 并对磁性复合微粒的制备条件进行了优化. 通过激光粒度散射仪和透射电子显微镜分析了不同条件下磁性复合微粒的粒径分布及形貌, 结果表明: Fe3O4种子的磁响应性、悬浮稳定性以及种子表面Au3+的还原条件等是得到单分散性、粒径均一、磁响应性和悬浮性能好的胶态Fe3O4/Au复合微粒的主要影响因素. 通过紫外-可见分光光度计对Fe3O4/Au复合微粒的扫描分析发现, 磁性复合微粒在可见光区域呈现与胶体金类似的特征吸收峰, d (0.5) =168 nm的Fe3O4/Au磁性复合微粒的最大吸收峰位于波长625 nm处. 相似文献
11.
采用实验室自制的聚合氯化铝为原料,结合溶胶-凝胶法和油滴法制备球形拟薄水铝石及其衍生物γ-Al2O3,采用XRD,TEM和N2吸附法对样品进行了分析表征,探讨了不同pH值、不同铝形态含量的聚合氯化铝、不同煅烧温度及不同表面活性剂对产物结构性质的影响。结果表明:pH值在8.5附近合成的水合氧化铝以拟薄水铝石为主;高Alc含量的聚合氯化铝有利于形成高比表面积的球形产物;在450~750℃下煅烧产物为球形γ-Al2O3,并且随温度升高,产物比表面积下降、孔径增大,孔容变化不明显,在1000℃下煅烧产物为球形θ-Al2O3与γ-Al2O3的混合物;随着聚乙二醇表面活性剂分子量的增加,所得球形γ-Al2O3的孔容和孔径增大,聚乙二醇10000的扩孔效果最好,450℃下煅烧所得球形γ-Al2O3的比表面积、孔容分别达326m2·g-1、0.55cm3·g-1。 相似文献
12.
基于聚乙烯醇/Fe2O3纳米颗粒的纤维素酶固定化 总被引:2,自引:2,他引:2
以聚乙烯醇/Fe2O3磁性纳米颗粒为纤维素酶固定化载体, 通过反复冻融的方法成功地实现了纤维素酶固定化. 采用透射电镜、红外光谱仪、振动样品磁强度计对固定化酶复合体进行了表征, 结果显示, 固定化酶复合体为大小约1 μm的微凝胶团, 内含10 nm左右的Fe2O3纳米颗粒. 研究影响固定化因素后发现, 当pH为6, 固定化时间为11 h, 纤维素酶/PVA质量比为4, PVA/Fe质量比为50时, 固定化纤维素酶效果最好. 通过该方法固定后酶活回收率达42%, 酶水解效率显著提高, 经过5次反应后的固定化酶相对酶活力保留50%以上. 因此, 基于聚乙烯醇/Fe2O3纳米颗粒的纤维素酶固定有利于酶的循环使用并显著提高酶的使用效率, 是一种有效固定化纤维素酶的新方法. 相似文献
13.
以Bi(NO3)3·5H2O和Ti(OC4H9)4为原料,采用自组装单层膜技术,在负载有功能化三氯十八烷基硅烷(octadecyl-trichloro-silane,OTS)的FTO基板上制备了Bi2Ti2O7 薄膜。基板表面的亲水性测试表明,紫外照射使OTS自组装单层膜表面由疏水转变为亲水,实现功能化。借助X射线衍射(XRD)、X射线能量色散谱(EDS)、扫描电子显微镜(SEM)和原子力显微镜(AFM)分析分别对Bi2Ti2O7薄膜的组成、结构和微观形貌进行了表征。结果表明,沉积溶液浓度为0.02 mol·L-1时,所得Bi2Ti2O7薄膜均匀致密。560 ℃热处理1 h、厚度为0.4 μm的Bi2Ti2O7薄膜在100 kHz的介电常数为153,介电损耗为0.089。 相似文献
14.
采用共沉淀法制备了一系列Mn掺杂摩尔分数为0~5%的CeO2-ZrO2-Al2O3(CZA)复合氧化物, 并采用BET, OSC, XRD, XPS, H2-TPR等方法对所制备的材料进行了表征. 结果表明, 所制备的材料均形成了稳定的CZA固溶体, 尤其是Mn掺杂0.5%的材料在600和1000 ℃焙烧后均表现出最好的织构性能. OSC和H2-TPR的结果表明, Mn掺杂量≤1%时, 氧在材料中的体相移动是材料储氧和被还原的速控步骤, 并且Mn的掺杂量为0.2%时, 储氧量最大, 材料的还原温度也最低; Mn掺杂量>1%时, Mn物种对材料储氧和被还原的作用显著. XPS结果表明, Mn在焙烧过程中会迁移向表面, 结合H2-TPR结果可知, 新鲜样品表面的MnOx物种主要为Mn2O3, 而老化样品主要为Mn3O4. 相似文献
15.
纳米复合材料CoFe2O4/SiO2的制备和表征 总被引:2,自引:0,他引:2
采用溶胶-凝胶法制备了(CoFe2O4)x/(SiO2)1-x纳米复合材料. 利用TG/DTA, XRD和Mssbauer效应研究了热处理过程中干凝胶的变化及样品的结构、晶粒尺寸和磁性. 结果表明, 随着SiO2含量的增加, 样品中CoFe2O4的晶粒尺寸和内磁场逐渐变小, 并从磁有序状态转变为超顺磁状态. 相似文献
16.
17.
将少量Zn添加到催化剂Pt-Sn/γ-Al2O3中, 可显著提高催化剂的丙烷脱氢稳定性和丙烯的选择性. 程序升温还原(H2-TPR)和程序升温电导(TPEC)测试结果表明, Zn的存在使Sn在强还原气氛中不易被还原, Sn的氧化态的稳定存在是Sn发挥助剂作用和保持催化剂稳定性的重要条件. 相似文献
18.
报道了采用气相法对PbTiO3陶瓷扩渗La-Ce混合稀土元素的研究. 在气相扩渗过程中, La, Ce与PbTiO3陶瓷组元发生了复杂反应,生成了稀土化合物La2Ti6O15和CeTi21O38, 制备出未见报道的La2Ti6O15-CeTi21O38-PbTiO3陶瓷材料, 经测试其导电性能发生了十分显著的变化. La2Ti6O15-CeTi21O38-PbTiO3陶瓷材料的室温电阻率从2.0 ×1010 W·m下降为0.248 W·m,而且随着温度的变化, 晶粒电阻呈现明显的PTCR效应,而晶界电阻随着温度的升高,呈急剧连续降低状态,总电阻的变化规律与晶界电阻的变化相一致, 试样总电阻的PTCR效应已不存在, 近趋导体. 经XPS测试分析, 进一步证实了La2Ti6O15-CeTi21O38-PbTiO3陶瓷材料中铅、钛等元素均有变价, 因而导致了La2Ti6O15-CeTi21O38-PbTiO3陶瓷材料电阻率的降低, 测试结果还首次给出了La2Ti6O15-CeTi21O38-PbTiO3陶瓷材料中各元素结合能位置的峰值. TG-DTA热分析表明La2Ti6O15-CeTi21O38-PbTiO3陶瓷材料具有较好的高温热稳定性. 相似文献
19.
采用酸蒸气水热免洗方法合成了立方ZrW2O8类型化合物的系列前驱物ZrMo2-xWxO7(OH, Cl)2·2H2O(x=0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8), 并由此制备了纯立方相ZrMo2-xWxO8(x=0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8). 提出了用X射线粉末衍射相对积分强度表征有序-无序介稳态晶体有序度的方法, 发现在制备条件下, 随着Mo/W摩尔比的减小, 立方相ZrMo2-xWxO8有序-无序介稳态的饱和有序度增加的规律. 讨论了原料选择以及中间产物的形貌对合成目标产物的影响, 探讨了以铵盐为原料制备前驱物反应的微观过程. 相似文献
20.
采用溶胶-凝胶法在较低温度条件下设计合成了新型的具有ABO3型钙钛矿结构的三元金属复合氧化物LaCo0.5Ti0.5O3. 通过TG-DTA, XRD, XPS, UV-Vis DRS等测试技术和可见光光催化活性测试对其进行了表征. 结果表明, 与LaCoO3和La2Ti2O7相比, LaCo0.5Ti0.5O3样品表现出相对较高的可见光光催化活性, 并且合成温度较低. 这是由于原料中的Co2+和Ti4+离子通过电荷补偿作用使产物B位的两种金属均以+3价氧化态分布所致. 相似文献