首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The unique ability of the pikromycin polyketide synthase (Pik PKS) to generate 12- and 14-membered ring macrolactones presents an opportunity to explore the fundamental processes of polyketide synthesis, specifically, the mechanistic details of the chain extension process. We have overexpressed and purified PikAIII and PikAIV and demonstrated the ability of these proteins to generate triketide lactone products using (14)C-methylmalonyl-CoA as the sole substrate. Monomodular PikAIII generates TKL (1) when reacted alone, and synthesizes TKL (2) upon reaction in combination with PikAIV. Product formation remains dependent on the enzymatic decarboxylation of methylmalonyl-CoA and transfer of the acyl chain within the enzyme rather than acylation by propionyl-CoA from spontaneous decarboxylation. We propose that synthesis of TKL (1) by PikAIII involves iterative assembly of the triketide chain within a PikAIII homodimer analogous to the nonmodular type I PKS systems.  相似文献   

2.
The pikromycin polyketide synthase (PKS) is unique in its ability to generate both 12 and 14 membered ring macrolactones. As such, dissection of the molecular basis for controlling metabolic diversity in this system remains an important objective for understanding modular PKS function and expanding chemical diversity. Here, we describe a series of experiments designed to probe the importance of the protein-protein interaction that occurs between the final two monomodules, PikAIII (module 5) and PikAIV (module 6), for the production of the 12 membered ring macrolactone 10-deoxymethynolide. The results obtained from these in vitro studies demonstrate that PikAIII and PikAIV generate the 12 membered ring macrocycle most efficiently when engaged in their native protein-protein interaction. Accordingly, the data are consistent with PikAIV adopting an alternative conformation that enables the terminal thioesterase domain to directly off-load the PikAIII-bound hexaketide intermediate for macrocyclization.  相似文献   

3.
The unique ability of the pikromycin (Pik) polyketide synthase to generate 12- and 14-membered ring macrolactones presents an opportunity to explore the fundamental processes underlying polyketide synthesis, specifically the mechanistic details of chain extension, keto group processing, acyl chain release, and macrocyclization. We have synthesized the natural pentaketide and hexaketide chain elongation intermediates as N-acetyl cysteamine (NAC) thioesters and have used them as substrates for in vitro conversions with engineered PikAIII+TE and in combination with native PikAIII (module 5) and PikAIV (module 6) multifunctional proteins. This investigation demonstrates directly the remarkable ability of these monomodules to catalyze one or two chain extension reactions, keto group processing steps, acyl-ACP release, and cyclization to generate 10-deoxymethynolide and narbonolide. The results reveal the enormous preference of Pik monomodules for their natural polyketide substrates and provide an important comparative analysis with previous studies using unnatural diketide NAC thioester substrates.  相似文献   

4.
The pikromycin (Pik) polyketide synthase (PKS) from Streptomyces venezuelae comprises four multifunctional polypeptides (PikAI, PikAII, PikAIII, and PikAIV). This PKS can generate 12- and 14-membered ring macrolactones (10-deoxymethynolide and narbonolide, respectively) through the activity of its terminal modules (PikAIII and PikAIV). We performed a series of experiments involving the functional replacement of PikAIV in mutant strains with homodimeric and heterodimeric PikAIV modules to investigate the details of macrolactone ring size determination. The results suggest a new and surprising mechanism by which the penultimate hexaketide chain elongation intermediate is transferred from PikAIII ACP5 to PikAIV ACP6 before release by the terminal thioesterase domain. Elucidation of this chain transfer mechanism provides important new details about alternative macrolactone ring size formation in modular PKSs and contributes to the potential for rational design of structural diversity by combinatorial biosynthesis.  相似文献   

5.
BACKGROUND: Modular polyketide synthases (PKSs) produce a wide range of medically significant compounds. In the case of the pikromycin PKS of Streptomyces venezuelae, four separate polypeptides (PikAI-PikAIV), comprising a total of one loading domain and six extension modules, generate the 14-membered ring macrolactone narbonolide. The polypeptide PikAIV contains a thioesterase (TE) domain and is responsible for catalyzing both the last elongation step with methylmalonyl CoA, and subsequent release of the final polyketide chain elongation intermediate from the PKS. Under certain growth conditions this polypeptide is synthesized from an alternative translational start site, giving rise to an N-terminal truncated form of PikAIV, containing only half of the ketosynthase (KS(6)) domain. The truncated form of PikAIV is unable to catalyze the final elongation step, but is able to cleave a polyketide chain from the preceding module on PikAIII (ACP(5)), giving rise to the 12-membered ring product 10-deoxymethynolide. RESULTS: S. venezuelae mutants expressing hybrid PikAIV polypeptides containing acyl carrier protein (ACP) and malonyl CoA specific acyltransferase (AT) domains from the rapamycin PKS were unable to catalyze production of 12- or 14-membered ring macrolactone products. Plasmid-based expression of a hybrid PikAIV containing the native KS(6) and TE domains, however, restored production of both narbonolide and 10-deoxymethynolide in the S. venezuelae AX912 mutant that generates a TE-deleted form of PikAIV. Use of alternative KS domains or deletion of the KS(6) domain within the hybrid PikAIV resulted in loss of both products. Plasmid-based expression of a TE domain of PikAIV as a separate polypeptide in the AX912 mutant resulted in greater than 50% restoration of 10-deoxymethynolide, but not in mutants expressing a hybrid PikAIV bearing an unnatural AT domain. Mutants expressing hybrid PikAIV polypeptides containing the natural AT(6) domains and different ACP domains efficiently produced polyketide products, but with a significantly higher 10-deoxymethynolide/narbonolide ratio than observed with native PikAIV. CONCLUSIONS: Dimerization of KS(6) modules allows in vivo formation of a PKS heterodimer using PikAIV polypeptides containing different AT and ACP domains. In such heterodimers, the TE domain and the AT(6) domain responsible for formation of the narbonolide product are located on different polypeptide chains. The AT(6) domain of PikAIV plays an important role in facilitating TE-catalyzed chain termination (10-deoxymethynolide formation) at the proceeding module in PikAIII. The pikromycin PKS can tolerate the presence of multiple forms (active and inactive) of PikAIV, and decreased efficiency of elongation by PikAIV can result in increased levels of 10-deoxymethynolide. These results provide new insight into functional molecular interactions and interdomain recognition in modular PKSs.  相似文献   

6.
BACKGROUND: Polyketides are important compounds with antibiotic and anticancer activities. Several modular polyketide synthases (PKSs) contain a terminal thioesterase (TE) domain probably responsible for the release and concomitant cyclization of the fully processed polyketide chain. Because the TE domain influences qualitative aspects of product formation by engineered PKSs, its mechanism and specificity are of considerable interest. RESULTS: The TE domain of the 6-deoxyerythronolide B synthase was overexpressed in Escherichia coli. When tested against a set of N-acetyl cysteamine thioesters the TE domain did not act as a cyclase, but showed significant hydrolytic specificity towards substrates that mimic important features of its natural substrate. Also the overall rate of polyketide chain release was strongly enhanced by a covalent connection between the TE domain and the terminal PKS module (by as much as 100-fold compared with separate TE and PKS 'domains'). CONCLUSIONS: The inability of the TE domain alone to catalyze cyclization suggests that macrocycle formation results from the combined action of the TE domain and a PKS module. The chain-length and stereochemical preferences of the TE domain might be relevant in the design and engineered biosynthesis of certain novel polyketides. Our results also suggest that the TE domain might loop back to catalyze the release of polyketide chains from both terminal and pre-terminal modules, which may explain the ability of certain naturally occurring PKSs, such as the picromycin synthase, to generate both 12-membered and 14-membered macrolide antibiotics.  相似文献   

7.
Polyketide natural products generated by type I modular polyketide synthases (PKSs) are vital components in our drug repertoire. To reprogram these biosynthetic assembly lines, we must first understand the steps that occur within the modular "black boxes." Herein, key steps of acyl-CoA extender unit selection are explored by in?vitro biochemical analysis of the PikAIV PKS model system. Two complementary approaches are employed: a fluorescent-probe assay for steady-state kinetic analysis, and Fourier Transform Ion Cyclotron Resonance-mass spectrometry (FTICR-MS) to monitor active-site occupancy. Findings from five enzyme variants and four model substrates have enabled a model to be proposed involving catalysis based upon acyl-CoA substrate loading followed by differential rates of hydrolysis. These efforts suggest a strategy for future pathway engineering efforts using unnatural extender units with slow rates of hydrolytic off-loading from the acyltransferase domain.  相似文献   

8.
BACKGROUND: Modular polyketide synthases catalyse the biosynthesis of medically useful natural products by stepwise chain assembly, with each module of enzyme activities catalysing a separate cycle of polyketide chain extension. Domain swapping between polyketide synthases leads to hybrid multienzymes that yield novel polyketides in a more or less predictable way. No experiments have so far been reported which attempt to enlarge a polyketide synthase by interpolating additional modules. RESULTS: We describe here the construction of tetraketide synthases in which an entire extension module from the rapamycin-producing polyketide synthase is covalently spliced between the first two extension modules of the erythromycin-producing polyketide synthase (DEBS). The extended polyketide synthases thus formed are found to catalyse the synthesis of specific tetraketide products containing an appropriate extra ketide unit. Co-expression in Saccharopolyspora erythraea of the extended DEBS multienzyme with multienzymes DEBS 2 and DEBS 3 leads to the formation, as expected, of novel octaketide macrolactones. In each case the predicted products are accompanied by significant amounts of unextended products, corresponding to those of the unaltered DEBS PKS. We refer to this newly observed phenomenon as 'skipping'. CONCLUSIONS: The strategy exemplified here shows far-reaching possibilities for combinatorial engineering of polyketide natural products, as well as revealing the ability of modular polyketide synthases to 'skip' extension modules. The results also provide additional insight into the three-dimensional arrangement of modules within these giant synthases.  相似文献   

9.
Since their discovery, polyketide synthases have received massive attention from researchers hoping to harness their potential as a platform for generating new and improved therapeutics. Despite significant strides toward this end, inherent specificities within the enzymes responsible for polyketide production have severely limited these efforts. We have developed a mechanism-based, fluorescence transfer assay for a key enzyme component of all polyketide synthases, the ketosynthase domain. As demonstrated, this method can be used with both ketosynthase-containing didomains and full modules. As proof of principle, the ketosynthase domain from module 6 of the 6-deoxyerythronolide synthase is examined for its ability to accept a variety of simple thioester substrates. Consistent with its natural hexaketide substrate, we find that this ketosynthase prefers longer, α-branched thioesters and its ability to distinguish these structural features is quite remarkable. Substrate electronics are also tested via a variety of p-substituted aromatic groups. In all, we expect this technique to find considerable use in the field of polyketide biosynthesis and engineering due to its extraordinary simplicity and very distinct visible readout.  相似文献   

10.
Picromycin/methymycin synthase (PICS) is a modular polyketide synthase (PKS) that is responsible for the biosynthesis of both 10-deoxymethynolide (1) and narbonolide (2), the parent 12- and 14-membered aglycone precursors of the macrolide antibiotics methymycin and picromycin, respectively. PICS module 2 is a dehydratase (DH)-containing module that catalyzes the formation of the unsaturated triketide intermediate using malonyl-CoA as the chain extension substrate. Recombinant PICS module 2+TE, with the PICS thioesterase domain appended to the C-terminus to allow release of polyketide products, was expressed in Escherichia coli. Purified PICS module 2+TE converted malonyl-CoA and 4, the N-acetylcysteamine thioester of (2S,3R)-2-methyl-3-hydroxypentanoic acid, to a 1:2 mixture of the triketide acid (4S,5R)-4-methyl-5-hydroxy-2-heptenoic acid (5) and (3S,4S,5R)-3,5-dihydroxy-4-methyl-n-heptanoic acid-delta-lactone (10) with a combined kcat of 0.6 min(-1). The triketide lactone 10 is formed by thioesterase-catalyzed cyclization of the corresponding d-3-hydroxyacyl-SACP intermediate, a reaction which competes with dehydration catalyzed by the dehydratase domain. PICS module 2+TE showed a strong preference for the syn-diketide-SNAC 4, with a 20-fold greater kcat/K(m) than the anti-(2S,3S)-diketide-SNAC 14, and a 40-fold advantage over the syn-(2R,3S)-diketide-SNAC 13. PICS module 2(DH(0))+TE, with an inactivated DH domain, produced exclusively 10, while three PICS module 2(KR(0))+TE mutants, with inactivated KR domains, produced exclusively or predominantly the unreduced triketide ketolactone, (4S,5R)-3-oxo-4-methyl-5-hydroxy-n-heptanoic acid-delta-lactone (7). These studies establish for the first time the structure and stereochemistry of the intermediates of a polyketide chain elongation cycle catalyzed by a DH-containing module, while confirming the importance of key active site residues in both KR and DH domains.  相似文献   

11.
Unnatural combinations of polyketide synthase modules often fail to make a polyketide product. The causes of these failures are likely complex and are not yet amenable to rational correction. One possible explanation is the inability of the ketosynthase (KS) domain to extend the ketide donated to it by the upstream module. We therefore addressed the problem by exchanging KS domains of the acceptor module in a combinatorial fashion and coexpressing these chimeric modules with ketide-donor modules that naturally interact with the transplanted KS. This approach was remarkably successful in activating previously unproductive bimodular combinations, and the results augur well for the ongoing development of molecular tools to design and produce novel polyketides.  相似文献   

12.
BACKGROUND: Myxobacteria have been well established as a potent source for natural products with biological activity. They produce a considerable variety of compounds which represent typical polyketide structures with incorporated amino acids (e.g. the epothilons, the myxothiazols and the myxalamids). Several of these secondary metabolites are effective inhibitors of the electron transport via the respiratory chain and have been widely used. Molecular cloning and characterization of the genes governing the biosynthesis of these structures is of considerable interest, because such information adds to the limited knowledge as to how polyketide synthases (PKSs) and non-ribosomal peptide synthetases (NRPSs) interact and how they might be manipulated in order to form novel antibiotics. RESULTS: A DNA region of approximately 50000 base pairs from Stigmatella aurantiaca Sga15 was sequenced and shown by gene disruption to be involved in myxalamid biosynthesis. Sequence analysis reveals that the myxalamids are formed by a combined PKS/NRPS system. The terminal NRPS MxaA extends the assembled polyketide chain of the myxalamids with alanine. MxaA contains an N-terminal domain with homology to NAD binding proteins, which is responsible during the biogenesis for a novel type of reductive chain release giving rise to the 2-amino-propanol moiety of the myxalamids. The last module of the PKS reveals an unprecedented genetic organization; it is encoded on two genes (mxaB1 and mxaB2), subdividing the domains of one module from each other. A sequence comparison of myxobacterial acyl-transferase domains with known systems from streptomycetes and bacilli reveals that consensus sequences proposed to be specific for methylmalonyl-CoA and malonyl-CoA are not always reliable. CONCLUSIONS: The complete biosynthetic gene cluster of the myxalamid-type electron transport inhibitor from S. aurantiaca Sga15 has been cloned and analyzed. It represents one of the few examples of combined PKS/NRPS systems, the analysis and manipulation of which has the potential to generate novel hybrid structures via combinatorial biosynthesis (e.g. via module-swapping techniques). Additionally, a new type of reductive release from PKS/NRPS systems is described.  相似文献   

13.
Aklanonic acid, an anthraquinone natural product, is a common advanced intermediate in the biosynthesis of several antitumor polyketide antibiotics, including doxorubicin and aclacinomycin A. Intensive semisynthetic and biosynthetic efforts have been directed toward developing improved analogues of these clinically important compounds. The primer unit of such polyfunctional aromatic polyketides is an attractive site for introducing novel chemical functionality, and attempts have been made to modify the primer unit by precursor-directed biosynthesis or protein engineering of the polyketide synthase (PKS). We have previously demonstrated the feasibility of engineering bimodular aromatic PKSs capable of synthesizing unnatural hexaketides and octaketides. In this report, we extend this ability by preparing analogues of aklanonic acid, a decaketide, and its methyl ester. For example, by recombining the R1128 initiation module with the dodecaketide-specific pradimicin PKS, the isobutyryl-primed analogue of aklanonic acid (YT296b, 10) and its methyl ester (YT299b, 12) were prepared. In contrast, elongation modules from dodecaketide-specific spore pigment PKSs were unable to interact with the R1128 initiation module. Thus, in addition to revealing a practical route to new anthracycline antibiotics, we also observed a fundamental incompatibility between antibiotic and spore pigment biosynthesis in the actinomycetes bacteria.  相似文献   

14.
Yi Tang 《Tetrahedron》2004,60(35):7659-7671
Polycyclic aromatic polyketides such as actinorhodin and tetracenomycin are synthesized from acetate equivalents by type II polyketide synthases (PKS). Their carbon chain backbones are derived from malonyl-CoA building blocks through the action of a minimal PKS module consisting of a ketosynthase, a chain length factor, an acyl carrier protein (ACP) and a malonyl-CoA/ACP transacylase. In contrast to these acetogenic polyketides, the backbones of a few aromatic polyketide natural products, such as the R1128 antibiotics, are primed by non-acetate building blocks. These polyketides are synthesized by bimodular PKSs comprising of a dedicated initiation module, which includes a ketosynthase, acyl transferase and ACP, as well as a minimal PKS module. Recently we showed that regioselectively modified polyketides could be synthesized through the genetic recombination of initiation modules and minimal PKS modules from different polyketide biosynthetic pathways (Tang et al. PLoS Biol. 2004, 2, 227-238). For example, the actinorhodin and tetracenomycin minimal PKSs could accept and elongate unnatural primer units from the R1128 initiation module. In this report we provide further examples of using heterologous bimodular PKSs for the engineered biosynthesis of new aromatic polyketides. In addition to providing insights into the biosynthetic mechanisms of aromatic PKSs, our findings also highlight considerable potential for crosstalk between amino acid catabolism and aromatic polyketide biosynthesis. For example, exogenously supplied unnatural amino acids are efficiently incorporated into bioactive anthraquinone antibiotics.  相似文献   

15.
BACKGROUND: The macrolide antibiotic erythromycin A, like other complex aliphatic polyketides, is synthesised by a bacterial modular polyketide synthase (PKS). Such PKSs, in contrast to other fatty acid and polyketide synthases which work iteratively, contain a separate set or module of enzyme activities for each successive cycle of polyketide chain extension, and the number and type of modules together determine the structure of the polyketide product. Thus, the six extension modules of the erythromycin PKS (DEBS) together catalyse the production of the specific heptaketide 6-deoxyerythronolide B. RESULTS: A mutant strain of the erythromycin producer Saccharopolyspora erythraea, which accumulates the aglycone intermediate erythronolide B, was found unexpectedly to produce two novel octaketides, both 16-membered macrolides. These compounds were detectable in fermentation broths of wild-type S. erythraea, but not in a strain from which the DEBS genes had been specifically deleted. From their structures, both of these octaketides appear to be aberrant products of DEBS in which module 4 has 'stuttered', that is, has catalysed two successive cycles of chain extension. CONCLUSIONS: The isolation of novel DEBS-derived octaketides provides the first evidence that an extension module in a modular PKS has the potential to catalyse iterative rounds of chain elongation like other type I FAS and PKS systems. The factors governing the extent of such 'stuttering' remain to be determined.  相似文献   

16.
Detailed analysis of the modular Type I polyketide synthase (PKS) involved in the biosynthesis of the marginolactone azalomycin F in mangrove Streptomyces sp. 211726 has shown that only nineteen extension modules are required to accomplish twenty cycles of polyketide chain elongation. Analysis of the products of a PKS mutant specifically inactivated in the dehydratase domain of extension‐module 1 showed that this module catalyzes two successive elongations with different outcomes. Strikingly, the enoylreductase domain of this module can apparently be “toggled” off and on : it functions in only the second of these two cycles. This novel mechanism expands our understanding of PKS assembly‐line catalysis and may explain examples of apparent non‐colinearity in other modular PKS systems.  相似文献   

17.
The dehydratase domains (DHs) of the iso‐migrastatin (iso‐MGS) polyketide synthase (PKS) were investigated by systematic inactivation of the DHs in module‐6, ‐9, ‐10 of MgsF (i.e., DH6, DH9, DH10) and module‐11 of MgsG (i.e., DH11) in vivo, followed by structural characterization of the metabolites accumulated by the mutants, and biochemical characterization of DH10 in vitro, using polyketide substrate mimics with varying chain lengths. These studies allowed us to assign the functions for all four DHs, identifying DH10 as the dedicated dehydratase that catalyzes the dehydration of the C17 hydroxy group during iso‐MGS biosynthesis. In contrast to canonical DHs that catalyze dehydration of the β‐hydroxy groups of the nascent polyketide intermediates, DH10 acts in a long‐range manner that is unprecedented for type I PKSs, a novel dehydration mechanism that could be exploited for polyketide structural diversity by combinatorial biosynthesis and synthetic biology.  相似文献   

18.
A tetraketide synthase containing a loading module (LM), the extension modules erythromycin module 1, rapamycin module 2, and erythromycin module 2 (LM-Ery1-Rap2-Ery2-TE), when expressed in Saccharopolyspora erythraea strain JC2, produced as previously reported a mixture of tetraketide lactones (minor products) and triketide lactones (major products). Several alternative plausible mechanisms by which this "skipping" phenomenon might occur may be proposed. Site-directed mutagenesis of the ketosynthase (KS) and acylcarrier protein (ACP) domains in the interpolated module has shown that skipping within the hybrid PKS involves passage of the growing polyketide through the interpolated module, by direct ACP-to-ACP transfer of the polyketide chain.  相似文献   

19.
A nonribosomal peptide synthetase (NRPS) loading module and a polyketide synthase (PKS) elongation module catalyze the preliminary steps in the biosynthesis of the rifamycin antibiotics. A benzoate molecule is covalently attached to the phosphopantetheine arm of the thiolation domain of the loading module when its reaction partner methylmalonyl-CoA is absent. Occupancy of the thiolation domain of the elongation module by a methylmalonyl moiety appears to trigger intermodular transfer of benzoate to the ketosynthase domain of the elongation module. This transthiolation event is fast relative to the initial loading of benzoate onto the loading module. It will be of interest to determine if these results are generally true for intermodular acyl transfer in other NRPS-PKS and PKS assembly lines.  相似文献   

20.
BACKGROUND: Using an acyl-acyl carrier protein (ACP) as a starter unit, type II polyketide synthases (PKSs) generate a wide range of polyketide products by successive decarboxylative condensations with the two-carbon donor malonyl (ACP). In vitro experiments have demonstrated that polyketide biosynthesis in reconstituted PKS systems requires the fatty acid synthase (FAS) enzyme malonyl CoA:ACP acyltransferase (FabD) from streptomycetes. It has also been shown that holo-ACPs from a type II PKS can catalyze self-malonylation in the presence of malonyl CoA and negate this FabD requirement. The relative roles of FabD and ACP self-malonylation in PKS biosynthesis in vivo are still not known. RESULTS: We have examined the ACP specificity of the Streptomyces glaucescens FabD and shown that it reacts specifically with monomeric forms of ACP, with comparable k(cat)/K(M) values for ACPs from both type II PKS and FAS systems. Incubations of tetracenomycin ACP (TcmM) with the Escherichia coli FAS ACP (AcpP) unexpectedly revealed that, in addition to the self-malonylation process, TcmM can catalyze the malonylation of AcpP. The k(cat)/K(M) value for the TcmM-catalyzed malonylation of S. glaucescens FAS ACP is two orders of magnitude smaller than that observed for the FabD-catalyzed process. CONCLUSIONS: The ability of a PKS ACP to catalyze malonylation of a FAS ACP is a surprising finding and demonstrates for the first time that PKS ACPs and FabD can catalyze the same reaction. The differences in the catalytic efficiency of these two proteins rationalizes in vitro observations that FabD-independent polyketide biosynthesis proceeds only at high concentrations of a PKS ACP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号