首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of Fe2(CO)9 with Pd(PBu(t)3)2 and Pt(PBu(t)3)2 yielded the Fe-Pd and Fe-Pt cluster complexes Fe2(CO)9[M(PBu(t)3)]2, M = Pd (8) or Pt (9). The structures of 8 and 9 are analogous and consist of nearly planar butterfly clusters of two palladium/platinum atoms in the wing-tip positions and two mutually bonded iron atoms, Fe-Fe = 2.9582(11) A in 8 and 2.9100 (9) A in 9. Compound 8 decomposes to form the mononuclear iron compound Fe(CO)4(PBu(t)3) (11) when heated at 68 degrees C. The reaction of Pt(PBu(t)3)2 with Fe2(CO)9 in the presence of hydrogen at 127 degrees C yielded the dihydrido complex Fe2(CO)8[Pt(PBu(t)3)]2(mu-H)2 (10). Compound 10 contains a closed Fe2Pt2 tetrahedral cluster with hydrido ligands bridging two of the Fe-Pt bonds. Compounds 8, 9, and 10 were structurally characterized crystallographically.  相似文献   

2.
The reaction of Rh4(CO)12 with Pd(PBu t 3)2 yielded the high nuclearity bimetallic hexarhodium-tripalladium cluster complex Rh6(CO)16[Pd(PBu t 3)]3, 10, in 11% yield. Compound 10 was converted to the hexarhodium-tetrapalladium cluster Rh6(CO)16[Pd(PBu t 3)]4, 11, in 62% yield by reaction with an additional quantity of Pd(PBu t 3)2. Both compounds were characterized crystallographically. Structurally, both compounds consist of an octahedral cluster of six rhodium atoms with sixteen carbonyl ligands analogous to that of the known compound Rh6(CO)16. Compound 10 also contains three Pd(PBu t 3) groups that bridge three Rh–Rh bonds along edges of the Rh6 octahedron to give an overall D3 symmetry to the Rh6Pd3 cluster. Compound 11 contains four edge bridging Pd(PBu t 3) groups distributed across the Rh6 octahedron to give an overall D2d symmetry to the Rh6Pd4 cluster. Each Rh–Pd connection in both compounds contains a bridging carbonyl ligand that helps to stabilize the bond between the Pd(PBu t 3) groups and the Rh atoms. Both compounds can be regarded as Pd(PBu t 3) adducts of Rh6(CO)16.  相似文献   

3.
The hydride and PhC2H complexes, Ru5(CO)14(mu6-C)[Pt(PBut3)](mu-H)2, 2, and Ru5(CO)13(mu5-C)(PhC2H)[Pt(PBut3)], 3, were obtained from the reactions of Ru5(CO)15(C)[Pt(PBut3)], 1, with hydrogen and PhC2H, respectively. Styrene was formed catalytically when hydrogen and PhC2H were allowed to react with 3 in combination, and the complex Ru5(CO)12(mu5-C)[PtPBut3](PhC2H)(mu-H)2, 4, containing both hydrides and a PhC2H ligand was formed. The catalysis is promoted by the presence of the platinum atom in the complexes.  相似文献   

4.
The reaction of Ru3(CO)12 with 1,3-diferrocenylprop-2-en-1-one,trans-FcCH=CHCOFc (where Fc is ferrocenyl), in boiling hexane afforded the complex (2c), which was converted into (3c) upon further heating. These complexes gave the complex (4) containing two Cl-bridged oxaruthenacycles upon dissolution in CHCl3 or CH2Cl2. The structures of complexes 3 and 4 were established by X-ray diffraction analysis. According to the data of1H NMR spectroscopy, the Cl-bridged complex exists in solutions as a mixture of isomers along with the monomeric form resulting from the cleavage of the halide bridges. All interconversions of the isomers occur with the participation of the monomeric form. Published inIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1616–1623, September, 2000.  相似文献   

5.
The synthesis of a (μ4-PPh) and some related (μ3-PPh) mixed metal clusters containing ruthenium is described together with the X-ray structures of [Ru3Rh2(CO)13(PEt3)(μ4-PPh)] and [Ru3Au(μ2-H)(CO)9(PMe2Ph)(μ3-PPh)].  相似文献   

6.
The reaction of Ru(5)(CO)(12)(eta(6)-C(6)H(6))(mu(5)-C), 7, with Pt(PBu(t)(3))(2) yielded two products Ru(5)(CO)(12)(eta(6)-C(6)H(6))(mu(6)-C)[Pt(PBu(t)(3))], 8, and Ru(5)(CO)(12)(eta(6)-C(6)H(6))(mu(6)-C)[Pt(PBu(t)(3))](2), 9. Compound 8 contains a Ru(5)Pt metal core in an open octahedral structure. In solution, 8 exists as a mixture of two isomers that interconvert rapidly on the NMR time scale at 20 degrees C, DeltaH() = 7.1(1) kcal mol(-1), DeltaS() = -5.1(6) cal mol(-)(1) K(-)(1), and DeltaG(298)(#) = 8.6(3) kcal mol(-1). Compound 9 is structurally similar to 8, but has an additional Pt(PBu(t)(3)) group bridging an Ru-Ru edge of the cluster. The two Pt(PBu(t)(3)) groups in 9 rapidly exchange on the NMR time scale at 70 degrees C, DeltaH(#) = 9.2(3) kcal mol(-)(1), DeltaS(#) = -5(1) cal mol(-)(1) K(-)(1), and DeltaG(298)(#) = 10.7(7) kcal mol(-1). Compound 8 reacts with hydrogen to give the dihydrido complex Ru(5)(CO)(11)(eta(6)-C(6)H(6))(mu(6)-C)[Pt(PBu(t)(3))](mu-H)(2), 10, in 59% yield. This compound consists of a closed Ru(5)Pt octahedron with two hydride ligands bridging two of the four Pt-Ru bonds.  相似文献   

7.
8.
A series of mixed-metal complexes coupling ruthenium light absorbers to platinum reactive metal sites through polyazine bridging ligands have been prepared of the form [(tpy)RuCl(BL)PtCl(2)](PF(6)) (BL = 2,3-bis(2-pyridyl)pyrazine (dpp), 2,3-bis(2-pyridyl)quinoxaline (dpq), 2,3-bis(2-pyridyl)benzoquinoxaline (dpb); tpy = 2,2':6',2' '-terpyridine). These systems possess electron-rich Ru metal centers bound to five polyazine nitrogens and one chloride ligand. This leads to complexes with low-energy Ru --> BL charge-transfer bands that are tunable with BL variation occurring at 544, 632, and 682 nm for dpp, dpq, and dpb, respectively. This tuning of the charge-transfer energy results from a stabilization of the BL(pi) orbitals in this series as evidenced by the cathodic shift in the first reduction of these complexes occurring at -0.50, -0.32, and -0.20 V vs Ag/AgCl, for dpp, dpq, and dpb, respectively. The chlorides bound to the Pt(II) center are substitutionally labile giving these complexes the ability to covalently bind to DNA. All three title bimetallics, [(tpy)RuCl(BL)PtCl(2)](PF(6)), avidly bind double-stranded DNA with t(1/2) = 1-2 min, substantially reducing the migration of DNA through an agarose gel. Details of the synthetic methods, FAB MS data, spectroscopic and electrochemical properties, and DNA binding studies are presented.  相似文献   

9.
Treatment of [Ru5C(CO)15] with one equivalent of [Hg(CF3)(CF3CO2)], in CH2Cl2, at room temperature affords the new cluster [RU5C(CO)15(HgCF3)(CF3CO2)] (1) in quantitative yield. A single crystal X-ray structural study of 1 shows that it contains a bridged-butterfly Ru5 metal core with the HgCF3 fragment bridging at the hinge position and the trifluoroacetate coordinated to the bridging ruthenium atom through one oxygen atom.  相似文献   

10.
We report a high yield, two-step synthesis of fac-[Ru(bpy)(CH3CN)3NO2]PF6 from the known complex [(p-cym)Ru(bpy)Cl]PF6 (p-cym = eta(6)-p-cymene). [(p-cym)Ru(bpy)NO2]PF6 is prepared by reacting [(p-cymene)Ru(bpy)Cl]PF6 with AgNO3/KNO2 or AgNO2. The 15NO2 analogue is prepared using K15NO2. Displacement of p-cymene from [(p-cym)Ru(bpy)NO2]PF6 by acetonitrile gives [Ru(bpy)(CH3CN)3NO2]PF6. The new complexes [(p-cym)Ru(bpy)NO2]PF6 and fac-[Ru(bpy)(CH3CN)3NO2]PF6 have been fully characterized by 1H and 15N NMR, IR, elemental analysis, and single-crystal structure determination. Reaction of [Ru(bpy)(CH3CN)3NO2]PF6 with the appropriate ligands gives the new complexes [Ru(bpy)(Tp)NO2] (Tp = HB(pz)3-, pz = 1-pyrazolyl), [Ru(bpy)(Tpm)NO2]PF6 (Tpm = HC(pz)3), and the previously prepared [Ru(bpy)(trpy)NO2]PF6 (trpy = 2,2',6',2' '-terpyridine). Reaction of the nitro complexes with HPF6 gives the new nitrosyl complexes [Ru(bpy)TpNO][PF6]2 and [Ru(bpy)(Tpm)NO][PF6]3. All complexes were prepared with 15N-labeled nitro or nitrosyl groups. The nitro and nitrosyl complexes were characterized by 1H and 15N NMR and IR spectroscopy, elemental analysis, cyclic voltammetry, and single-crystal structure determination for [Ru(bpy)TpNO][PF6]2. For the nitro complexes, a linear correlation is observed between the nitro 15N NMR chemical shift and 1/nu(asym), where nu(asym) is the asymmetric stretching frequency of the nitro group.  相似文献   

11.
Reactions of ethylenediamine solutions of K4Bi5 with Ni(PPh3)2(CO)2 yielded four novel hetero-atomic Bi/Ni deltahedral clusters. Three of them, the 7-atom pentagonal bipyramidal [Bi3Ni4(CO)6]3-, the 8-atom dodecahedral [Bi4Ni4(CO)6]2-, and the Ni-centered or empty 12-atom icosahedral [Nix@[Bi6Ni6(CO)8]4-, are closo-species according to both electron count and shape. The centered icosahedral cluster resembles packing in intermetallic compounds and belongs to the emerging class of intermetalloid clusters. The shape of the fourth cluster, [Bi3Ni6(CO)9]3-, can be derived from the icosahedral Ni-centered [Ni@[Bi6Ni6(CO)8]4- by removal of three Bi- and one Ni-atoms of two neighboring triangular faces. The clusters were structurally characterized by single-crystal X-ray diffraction in compounds with potassium cations sequestered by 2,2,2-crypt or 18-crown-6 ether. They were also characterized in solution by electrospray mass spectrometry.  相似文献   

12.
The platinum‐platinum attraction and the spectroscopic properties of [Pt3(μ‐CO)3(CO)3] (n = 3–5) were studied at the PBE level. Theoretical calculations are in agreement with experimental geometries. The absorption spectra of these platinum complexes were calculated by the single excitation time‐dependent (TD) density functional method. All complexes showed MLCT transitions interrelated with the intertriangular complexes. The values obtained at the PBE level are in agreement with the experimental color range. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

13.
The kinetic energy dependences of the reactions of Ni+(n) (n=2-16) with CD(4) are studied in a guided ion beam tandem mass spectrometer over the energy range of 0-10 eV. The main products are hydride formation Ni(n)D+, dehydrogenation to form Ni(n)CD+(2), and double dehydrogenation yielding Ni(n)C+. These primary products decompose at higher energies to form Ni(n)CD+, Ni(n-1)D+, Ni(n-1)C+, Ni(n-1)CD+, and Ni(n-1)CD+(2). Ni(n)CD(2) (+) (n=5-9) and Ni(n-1)CD(2) (+) (n > or =4) are not observed. In general, the efficiencies of the single and double dehydrogenation processes increase with cluster size. All reactions exhibit thresholds, and cross sections for the various primary and secondary reactions are analyzed to yield reaction thresholds from which bond energies for nickel cluster cations to C, CD, CD(2), and CD(3) are determined. The relative magnitudes of these bond energies are consistent with simple bond order considerations. Bond energies for larger clusters rapidly reach relatively constant values, which are used to estimate the chemisorption energies of the C, CD, CD(2), and CD(3) molecular fragments to nickel surfaces.  相似文献   

14.
The reaction of the Pt(I)Pt(I)Pt(II) triangulo cluster Pt(3)(micro-PBu(t)()(2))(3)(H)(CO)(2) (1) with TfOH (Tf = CF(3)SO(2)) affords the hydride-bridged cationic derivative [Pt(3)(mu-PBu(t)()(2))(2)(mu-H)(PBu(t)()(2)H)(CO)(2)]OTf (2). With TfOD the reaction gives selectively [Pt(3)(mu-PBu(t)(2))(2)(mu-D)(PBu(t)(2)H)(CO)(2)]OTf (2-D(1)), implying that the proton is transferred to a metal center while a P-H bond is formed by the reductive coupling of one of the bridging phosphides and the terminal hydride ligand of the reagent. The reaction proceeds through the formation of a thermally unstable kinetic intermediate which was characterized at low temperatures, and was suggested to be the CO-hydrogen-bonded (or protonated) [Pt(3)(mu-PBu(t)(2))(3)(H)(CO)(2)].HOTf (3). An ab initio theoretical study predicts a hydrogen-bonded complex or a proton-transfer tight ion pair as a possible candidate for the structure of the kinetic intermediate.  相似文献   

15.
Reaction of Ru3(CO)12 with HC(PPh2)3 leads to a variety of products, two of which have been characterised. One is the symmetrically capped product Ru3(CO)9[HC(PPh2)3], which was characterised spectroscopically. The second product was characterised crystallographically as Ru3(CO)9[HC(PPh2)-(PhPC6H4PPh)]-CHCl3.  相似文献   

16.
Adams RD  Captain B  Zhu L 《Inorganic chemistry》2005,44(19):6623-6631
Reaction of PtRu5(CO)15(PBut3)(C), 3, with hydrogen at 97 degrees C yielded the new dihydride-containing cluster compound PtRu5(CO)14(PBut3)(mu-H)2(mu6-C), 5. Compound 5 was characterized crystallographically and was shown to contain an octahedral cluster consisting of one platinum and five ruthenium atoms with a carbido ligand in the center. Two hydrido ligands bridge two oppositely positioned PtRu bonds. Compound 5 reacts with Pt(PBut3)2 to yield Pt2Ru5(CO)14(PBut3)2(mu-H)2(mu6-C), 6, a Pt(PBut3) adduct of 5, by adding a Pt(PBut3) group as a bridge across one of the Ru-Ru bonds in the square base of the Ru5 portion of the cluster. Compound 6 is dynamically active on the NMR time scale by a mechanism that appears to involve a shifting of the Pt(PBut3) group from one Ru-Ru bond to another. Two new complexes, PtRu5(CO)13(PBut3)(mu-H)3(GePh3)(mu5-C), 7, and PtRu5(CO)13(PBut3)(mu-H)2(mu-GePh2)(mu6-C), 8, were obtained from the reaction of 5 with HGePh3. The cluster of 7 has an open structure in which the Pt(PBut3) group bridges an edge of the square base of the square pyramidal Ru5 cluster. Compound 7 also has three bridging hydrido ligands and one terminal GePh3 ligand. When heated to 97 degrees C, 7 is slowly converted to 8 by cleavage of a phenyl group from the GePh3 ligand and elimination of benzene by its combination with one of the hydrido ligands. The PtRu5 metal cluster of 8 has a closed octahedral shape with a GePh2 ligand bridging one of the Ru-Ru bonds. Two tin-containing compounds, PtRu5(CO)13(PBut3)(mu-H)3(SnPh3)(mu5-C), 9, and PtRu5(CO)13(PBut3)(mu-H)2(mu-SnPh2)(mu6-C), 10, which are analogous to 7 and 8 were obtained from the reaction of 5 with HSnPh3.  相似文献   

17.
Group 10 metal(II) complexes of H2tbu-salen (H2tbu-salen = N,N'-bis(3',5'-di-tert-butylsalicylidene)ethylenediamine) and H2tbu-salcn (H2tbu-salcn = N,N'-bis(3',5'-di-tert-butylsalicylidene)-1,2-cyclohexanediamine) containing two 2,4-di(tert-butyl)phenol moieties, [Ni(tbu-salen)] (1a), [Ni(tbu-salcn)] (1b), [Pd(tbu-salen)] (2a), [Pd(tbu-salcn)] (2b), and [Pt(tbu-salen)] (3), were prepared and structurally characterized by X-ray diffraction, and the electronic structures of their one-electron-oxidized species were established by spectroscopic and electrochemical methods. All the complexes have a mononuclear structure with two phenolate oxygens coordinated in a very similar square-planar geometry. These complexes exhibited similar absorption spectra in CH2Cl2, indicating that they all have a similar structure in solution. Cyclic voltammograms of the complexes showed a quasi-reversible redox wave at E1/2 = 0.82-1.05 V (vs Ag/AgCl), corresponding to formation of the relatively stable one-electron-oxidized species. The electrochemically oxidized or Ce(IV)-oxidized species of 1a, 2a, and 3 displayed a first-order decay with a half-life of 83, 20, and 148 min at -20 degrees C, respectively. Ni(II) complexes 1a and 1b were converted to the phenoxyl radicals upon one-electron oxidation in CH2Cl2 above -80 degrees C and to the Ni(III)-phenolate species below -120 degrees C. The temperature-dependent conversion was reversible with the Ni(III)-phenolate ground state and was found to be a valence tautomerism governed by the solvent. One-electron-oxidized 1b was isolated as [Ni(tbu-salcn)]NO3 (4) having the Ni(II)-phenoxyl radical ground state. One-electron-oxidized species of the Pd(II) complexes 2a and 2b were different from those of the Ni(II) complexes, the Pd(II)-phenoxyl radical species being the ground state in CH2Cl2 in the range 5-300 K. The one-electron-oxidized form of 2b, [Pd(tbu-salcn)]NO3 (5), which was isolated as a dark green powder, was found to be a Pd(II)-phenoxyl radical complex. On the other hand, the ESR spectrum of the one-electron-oxidized species of Pt(II) complex 3 exhibited a temperature-independent large g anisotropy in CH2Cl2 below -80 degrees C, while its resonance Raman spectrum at -60 degrees C displayed nu8a of the phenoxyl radical band at 1600 cm-1. These results indicated that the ground state of the Pt(II)-phenoxyl radical species has a large distribution of the radical electron spin at the Pt center. One-electron oxidation of 3 gave [Pt(tbu-salen)]NO3 (6) as a solid, where the oxidation state of the Pt center was determined to be ca. +2.5 from the XPS and XANES measurements.  相似文献   

18.
The electron transfer series of complexes [V((t)bpy)(3)](z) (z = 3+, 2+, 0, 1-) has been synthesized and spectroscopically characterized with the exception of the monocationic species. Magnetic susceptibility measurements (4-290 K) establish an S = 1 ground state for [V((t)bpy)(3)](3+), S = (3)/(2) for [V((t)bpy)(3)](2+), S = (1)/(2) for [V((t)bpy)(3)], and an S = 0 ground state for [V((t)bpy)(3)](1-). The electrochemistry of this series recorded in tetrahydrofuran solution exhibits four reversible one-electron transfer steps. Electronic absorption, X-band electron paramagnetic resonance (EPR), and V K-edge X-ray absorption (XAS) spectra were recorded. All complexes have been studied computationally with density functional theory (DFT) using the B3LYP functional. It is unequivocally shown that the electronic structure of complexes is best described as [V(III)((t)bpy(0))(3)](3+), [V(II)((t)bpy(0))(3)](2+), [V(II)((t)bpy(?))(2)((t)bpy(0))](0), and [V(II)((t)bpy(?))(3)](1-), where ((t)bpy(0)) represents the neutral form of the ligand and ((t)bpy(?))(1-) is the one-electron reduced mononanionic radical form. In the neutral and monoanionic members, containing two and three ((t)bpy(?))(1-) ligands, respectively, the ligand spins are strongly antiferromagnetically coupled to the spins of the central V(II) ion (d(3); S = (3)/(2)) affording the observed ground states given above.  相似文献   

19.
The platinum(0) monocarbonyl complex, [(Cy(3)P)(2)Pt(CO)], was synthesized by reaction of [(Cy(3)P)(2)Pt] with [(η(5)-C(5)Me(5))Ir(CO)(2)] and subsequent irradiation. X-ray structure analysis was performed and represents the first structural evidence of a platinum(0) monocarbonyl complex bearing two free phosphine ligands. Its corresponding dicarbonyl complex [(Cy(3)P)(2)Pt(CO)(2)] was synthesized by treatment of [(Cy(3)P)(2)Pt] with CO at -40 °C and confirmed by X-ray structure analysis.  相似文献   

20.
In this work we examine a structural transition from non-planar three-dimensional structures to planar benzene-like structures in the C(x)H(x)P(6-x) (x = 0-6) series. The global minima of P(6), CHP(5), and C(2)H(2)P(4) species are benzvalene-like structures. The benzvalene and benzene-like structures of C(3)H(3)P(3) are close in energy with the former being slightly more stable at our best level of theory. The transition occurs at x = 4 (C(4)H(4)P(2)), where the benzene-like structures become significantly more stable than the benzvalene-like structures. We show that the pseudo Jahn-Teller effect, which is responsible for the deformation of planar P(6), CHP(5), and C(2)H(2)P(4) structures, is completely suppressed at x = 3 (benzene-like structures of C(3)H(3)P(3)). We present NICS(zz) values of all the benzene-like isomers in the series.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号