首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The epoxidation of cyclooctene catalyzed by iron(III) [tetrakis(pentafluorophenyl)] porphyrin chloride [(F20TPP)FeCl] was investigated in alcohol/acetonitrile solutions in order to determine the effects of the alcohol composition on the reaction kinetics. It was observed that alcohol composition affects both the observed rate of hydrogen peroxide consumption (the limiting reagent) and the selectivity of hydrogen peroxide utilization to form cyclooctene epoxide. The catalytically active species are formed only in alcohol-containing solvents as a consequence of (F(20)TPP)FeCl dissociation into [(F20TPP)Fe(ROH)]+ cations and Cl- anions. The observed reaction kinetics are analyzed in terms of a proposed mechanism for the epoxidation of the olefin and the decomposition of H2O2. The first step in this scheme is the reversible coordination of H2O2 to [(F20TPP)Fe(ROH)]+. The O-O bond of the coordinated H2O2 then undergoes either homolytic or heterolytic cleavage. The rate of homolytic cleavage is found to be independent of alcohol composition, whereas the rate of heterolytic cleavage increases with alcohol acidity. Heterolytic cleavage is envisioned to form iron(IV) pi-radical cations, whereas homolytic cleavage forms iron(IV) hydroxo cations. The iron(IV) radical cations are active for olefin epoxidation, whereas the iron(IV) cations catalyze the decomposition of H2O2. Reaction of iron(IV) pi-radical cations with H2O2 to form iron(IV) hydroxo cations is also included in the mechanism, a process that is favored by alcohols with a high charge density on the O atoms. The proposed mechanism describes successfully the effects of H2O2, cyclooctene, and porphyrin concentrations, as well as the effects of alcohol concentration.  相似文献   

2.
We report in this study that an oxoiron(IV) porphyrin complex bearing electron-deficient porphyrin ligand, (TPFPP)FeIV=O (TPFPP = meso-tetrakis(pentafluorophenyl)porphinato dianion), shows reactivities similar to those found in oxoiron(IV) porphyrin pi-cation radicals. In the epoxidation of olefins by the (TPFPP)FeIV=O complex, epoxides were yielded as major products; cyclohexene oxide was the sole product formed in the epoxidation of cyclohexene, and stilbenes were stereospecifically oxidized to the corresponding epoxide products. More striking results were obtained in alkane hydroxylation reactions; the hydroxylation of adamantane afforded a high degree of selectivity for tertiary C-H bonds over secondary C-H bonds, and the hydroxylation of cis-1,2-dimethylcyclohexane yielded a tertiary alcohol product with >99% retention of stereochemistry. The latter result demonstrates that an oxoiron(IV) porphyrin complex hydroxylates alkanes with a high stereospecificity. Isotope labeling studies performed with H218O and 18O2 in the olefin epoxidation and alkane hydroxylation reactions demonstrated that oxygen atoms in oxygenated products derived from the oxoiron(IV) porphyrin complex.  相似文献   

3.
Complexes of the (nitro)( meso-tetrakis(2- N-methylpyridyl)porphyinato)cobalt(III) cation, [LCoTMpyP(2)(NO 2)] (4+), in which L = water or ethanol have been immobilized through ionic attraction within Nafion films (Naf). These immobilized six-coordinate species, [LCoTMPyP(2)(NO 2)/Naf], have been found to catalyze the oxidation of triphenylphosphine in ethanol solution by dioxygen, therefore retaining the capacity to activate dioxygen catalytically without an additional reducing agent as was previously observed in nonaqueous solution for the non-ionic (nitro)cobalt porphyrin analogs. Heating these immobilized six-coordinate species under vacuum conditions results in the formation of the five-coordinate nitro derivatives, [CoTMPyP(2)(NO 2)/Naf] at 85 degrees C and [CoTMPyP(2)/Naf] at 110 degrees C. The catalytic oxidation of gas-phase cyclohexene with O 2 is supported only by the resulting immobilized five-coordinate nitro complex as was previously seen with the corresponding solution-phase catalyst in dichloromethane solution. The simultaneous catalytic oxidation of triphenylphosphine and cyclohexene with O 2 in the presence of the Nafion-bound six-coordinate ethanol nitro complex is also observed; however, this process is not seen for the CoTPP derivative in dichloromethane solution. The oxidation reactions do not occur with unmodified Nafion film or with Nafion-supported [BrCo(III)TmpyP]/Naf or [Co(II)TmpyP]/Naf, indicating the necessity for the nitro/nitrosyl ligand in the oxidation mechanism. The existence of a second reactive intermediate is indicated because the two simultaneous oxidation reactions depend on two distinct oxygen atom-transfer steps having different reactivity. The absence of homogeneous cyclohexene oxidation by the six-coordinate (H 2O)CoTPP(NO 2) derivatives in the presence of Ph 3P and O 2 in dichloromethane solution indicates that the second reactive intermediate is lost by an unidentified route only in solution, implying that the immobilization of it in Nafion allows it to react with cyclohexene. Although direct observation of this species has not been achieved, a comparitive DFT study of likely intermediates in several catalytic oxidation mechanisms at the BP 6-31G* level supports the possibility that this intermediate is a peroxynitro species on the basis of relative thermodynamic accessibility. The alternate intermediates evaluated include the reduced cobalt(II) porphyrin, the dioxygen adduct cobalt(III)-O 2 (-), the oxidized cobalt(II) pi-cation radical, and the nitrito complex, cobalt(III)-ONO.  相似文献   

4.
A study has been conducted of the mechanism and kinetics of cyclooctene epoxidation by hydrogen peroxide catalyzed by iron(III) tetrakispentafluorophenyl [F(20)TPPFe(III)] porphyrin. The formation of cyclooctene oxide, the only product, was determined by gas chromatography, and the consumption of hydrogen peroxide was determined by (1)H NMR. UV-visible spectroscopy was used to identify the state of the porphyrin as a function of solvent composition and reaction conditions and to follow the kinetics of porphyrin degradation. F(20)TPPFe(III) was found to be inactive in the chloride-ligated form, but became active when the chloride ligand was replaced by a methoxide ligand. The methoxide-ligated form of F(20)TPPFe(III) reacts with hydrogen peroxide to form an iron(III) hydroperoxide species, which then undergoes both heterolytic and homolytic cleavage to form iron(IV) pi-radical cations and iron(IV) oxo species, respectively. The iron(IV) pi-radical cations are responsible for the epoxidation of cyclooctene, whereas the iron(IV) oxo species are responsible for hydrogen peroxide decomposition. The kinetics of cyclooctene epoxidation and hydrogen peroxide decomposition developed from the proposed mechanism describe the experimentally observed kinetics accurately. The rate parameters derived from a fit of the model to the experimental data are consistent with previous estimates of the magnitude of these parameters.  相似文献   

5.
A porphyrin molecule containing four meso-appended 2,2'-bipyridyl ligands has been prepared. Each bipyridine is attached to the porphyrin core at the 4-position (pseudo-para to one of the pyridine nitrogens). Subsequently, each of the four bipyridines was complexed with a RuL2(2+) moiety and iron coordinated in the porphyrin core. When L = 4-vinyl-4'-methyl-2,2'-bipyridine, reduction of the ruthenium centers resulted in the formation of robust electroactive polymer films which deposited on the electrode surface. In the presence of aqueous acid, these films electrocatalytically epoxidize cyclohexene at positive potentials from the formal iron(IV) oxidation state. Although product analysis has only been conducted for cyclohexene, the catalytic activity extends to a large variety of olefins including ethylene and propylene.  相似文献   

6.
The formation of cyclohexyl hydroperoxide during cyclohexane oxidation by air oxygen in a biomimetic iron porphyrin system with proton (AcOH) and electron (Zn) donors and with or without an electron carrier (methylviologen (MV)) in an acetonitrile solution is detected by gas-liquid chromatography. The kinetics of C6H11OOH decomposition in this system catalyzed by iron porphyrins with various substituents in the phenyl rings is studied, and the rate constants of this process are determined. A kinetic scheme of cyclohexane oxidation is proposed. The contribution of the radical pathway to the reaction product formation is quantitatively estimated in the pseudo-steady-state approximation. For all iron porphyrins under investigation (FeTPP, FeTDCPP, and FeTpivPP), the fraction of the products formed via the radical pathway is smaller than 20%.  相似文献   

7.
The reaction of [Mn(TF(4)TMAP)](CF(3)SO(3))(5) (TF(4)TMAP=meso-tetrakis(2,3,5,6-tetrafluoro-N,N,N-trimethyl-4-aniliniumyl)porphinato dianion) with H(2)O(2) (2 equiv) at pH 10.5 and 0 degrees C yielded an oxomanganese(V) porphyrin complex 1 in aqueous solution, whereas an oxomanganese(IV) porphyrin complex 2 was generated in the reactions of tert-alkyl hydroperoxides such as tert-butyl hydroperoxide and 2-methyl-1-phenyl-2-propyl hydroperoxide. Complex 1 was capable of epoxidizing olefins and exchanging its oxygen with H(2) (18)O, whereas 2 did not epoxidize olefins. From the reactions of [Mn(TF(4)TMAP)](5+) with various oxidants in the pH range 3-11, the O-O bond cleavage of hydroperoxides was found to be sensitive to the hydroperoxide substituent and the pH of the reaction solution. Whereas the O-O bond of hydroperoxides containing an electron-donating tert-alkyl group is cleaved homolytically, an electron-withdrawing substituent such as an acyl group in m-chloroperoxybenzoic acid (m-CPBA) facilitates O-O bond heterolysis. The mechanism of the O-O bond cleavage of H(2)O(2) depends on the pH of the reaction solution: O-O bond homolysis prevails at low pH and O-O bond heterolysis becomes a predominant pathway at high pH. The effect of pH on (18)O incorporation from H(2) (18)O into oxygenated products was examined over a wide pH range, by carrying out the epoxidation of carbamazepine (CBZ) with [Mn(TF(4)TMAP)](5+) and KHSO(5) in buffered H(2) (18)O solutions. A high proportion of (18)O was incorporated into the CBZ-10,11-oxide product at all pH values but this proportion was not affected significantly by the pH of the reaction solution.  相似文献   

8.
We have recently proposed a mechanism for the epoxidation of cyclooctene by H2O2 catalyzed by iron(III) [tetrakis(pentafluorophenyl)]porphyrin chloride, (F20TPP)FeCl, in solvent containing methanol [Stephenson, N. A.; Bell, A.T. Inorg. Chem. 2006, 45, 2758-2766]. In that study, we found that catalysis did not occur unless (F20TPP)FeCl first dissociated, a process facilitated by the solvation of the Cl- anion by methanol and the coordination of methanol to the (F20TPP)Fe+ cation. Methanol as well as other alcohols was also found to facilitate the heterolytic cleavage of the O-O bond of H2O2 coordinated to the (F20TPP)Fe+ cation via a generalized acid mechanism. In the present study, we have shown that catalytic activity of the (F20TPP)Fe+ cation can be achieved in aprotic solvent by displacing the tightly bound chloride anion with a weakly bound triflate anion. By working in an aprotic solvent, acetonitrile, it was possible to determine the rate of heterolytic O-O bond cleavage in coordinated H2O2 unaffected by the interaction of the peroxide with methanol. A mechanism is proposed for this system and is shown to be valid over a range of reaction conditions. The mechanisms for cyclooctene epoxidation and H2O2 decomposition for the aprotic and protic solvent systems are similar with the only difference being the mechanism of proton-transfer prior to heterolytic cleavage of the oxygen-oxygen bond of coordinated hydrogen peroxide. Comparison of the rate parameters indicates that the utilization of hydrogen peroxide for cyclooctene epoxidation is higher in a protic solvent than in an aprotic solvent and results in a smaller extent of porphyrin degradation due to free radical attack. It was also shown that water can coordinate to the iron porphyrin cation in aprotic systems resulting in catalyst deactivation; this effect was not observed when methanol was present, since methanol was found to displace all of the coordinated water.  相似文献   

9.
The catalytic epoxidation of cyclohexene by iron(III) porphyrin complexes and H2O2 has been investigated in alcohol solvents to understand factors affecting the catalyst activity in protic solvents. The yields of cyclohexene oxide and the Fe(III/II) reduction potentials of iron porphyrin complexes were significantly affected by the protic solvents, and there was a close correlation between the product yields and the reduction potentials of the iron porphyrin catalysts. The role of alcohol solvents was proposed to control the electronic nature of iron porphyrin complexes that determines the catalyst activity in the epoxidation of olefins by H2O2. We have also demonstrated that an electron-deficient iron porphyrin complex can catalyze the epoxidation of olefins by H2O2 under conditions of limiting substrate with high conversion efficiency in a solvent mixture of CH3OH and CH2Cl2.  相似文献   

10.
Copper(II) complex of a Schiff base ligand derived from pyrrolcarbaldehyde and o‐phenylenediamine (H2L) has been synthesized and encapsulated in Y‐zeolite matrix. The hybrid material has been characterized by elemental analysis, IR and UV‐Vis spectroscopic studies as well as X‐ray diffraction (XRD) pattern. The encapsulated copper(II) catalyst is an active catalyst for the oxidation of cyclooctene and cyclohexene using H2O2 as oxidant. Under the optimized reaction conditions 81% conversion of cyclohexene with 65% selectivity for 2‐cyclohexenone formation and 87% conversion of cyclooctene with 46% selectivity for epoxide formation were obtained.  相似文献   

11.
We report herein a comprehensive study of (porphinato)iron [PFe]-catalyzed isobutane oxidation in which molecular oxygen is utilized as the sole oxidant; these catalytic reactions were carried out and monitored in both autoclave reactors and sapphire NMR tubes. In situ 19F and 13C NMR experiments, coupled with GC analyses and optical spectra obtained from the autoclave reactions have enabled the identification of the predominant porphyrinic species present during PFe-catalyzed oxidation of isobutane. Electron-deficient PFe catalysts based on 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin [(C6F5)4PH2], 2,3,7,8,12,13,17,18-octabromo-5,10,15,20-tetrakis(pentafluorophenyl) porphyrin [Br8(C6F5)4PH2], and 5,10,15,20-tetrakis(heptafluoropropyl) porphyrin [(C3F7)4PH2] macrocycles were examined. The nature and distribution of hydrocarbon oxidation products show that an autoxidation reaction pathway dominates the reaction kinetics, consistent with a radical chain process. For each catalytic system examined, PFeII species were shown not to be stable under moderate O2 pressure at 80 degrees C; in every case, the PFeII catalyst precursor was converted quantitatively to high-spin PFeIII complexes prior to the observation of any hydrocarbon oxidation products. Once catalytic isobutane oxidation is initiated, all reactions are marked by concomitant decomposition of the porphyrin-based catalyst. In situ 17O NMR spectroscopic studies confirm the incorporation of 17O from labeled water into the oxidation products, implicating the involvement of PFe-OH in the catalytic cycle. Importantly, Br8(C6F5)4PFe-based catalysts, which lack macrocycle C-H bonds, do not exhibit augmented stability with respect to analogous catalysts based on (C6F5)4PFe and (C3F7)4PFe species. The data presented are consistent with a hydrocarbon oxidation process in which PFe complexes play dual roles of radical chain initiator, and the species responsible for the catalytic decomposition of organic peroxides. This modified Haber-Weiss reaction scheme provides for the decomposition of tert-butyl hydroperoxide intermediates via reaction with PFe-OH complexes; the PFeIII species responsible for hydroperoxide decomposition are regenerated by reaction of PFeII with dioxygen under these experimental conditions.  相似文献   

12.
Electropolymerization regime of meso-tetrakis(3-methoxy-4-hydroxyphenyl) porphyrin is optimized to yield films possessing both electrocatalytical and permselective properties towards nitric oxide oxidation. The sensor composed of electrochemically oxidized carbon fiber, covered solely with nickel porphyrin derivative layer electropolymerized using our method, is characterized by high selectivity towards nitrite (1:600), ascorbate (1:8000) and dopamine (>1:80), determined by constant potential amperometry at 830 mV (vs. Ag/AgCl). Selectivity for ascorbate and dopamine as well as detection limit for NO (1.5 nM at S/N=3) is 5-10 times better than parameters usually reported for Nafion coated porphyrinic sensors. Nafion coating can further enhance selectivity properties as well as aids to the stability of the sensors' responses.  相似文献   

13.
Using cyclohexene as the probe substrate, the metalloporphyrin catalyzed efficient dioxygen activation in presence of solid inorganic phosphates and small quantities of t-butyl hydroperoxide under mild condition have been demonstrated. Among the phosphates K3PO4 and K2HPO4 are found to be very effective and the turnover frequency for cyclohexene oxidation has been above 400 per min. Possible oxygenation of cyclohexane and cyclooctene along this route has also been presented.  相似文献   

14.
The use of a Co(porphyrin)-amide ligand, , in the palladium(II)-catalyzed 1,4-diacetoxylation of conjugated dienes under O2 results in aerobic oxidation. The catalyst was highly active under O2, and the 1,4-diacetoxylation reaction could also be performed under air.  相似文献   

15.
The iron complexes [(BPMEN)Fe(OTf)2] (1) and [(TPA)Fe(OTf)2] (2) [BPMEN = N,N'-bis-(2-pyridylmethyl)-N,N'-dimethyl-1,2-ethylenediamine; TPA = tris-(2-pyridylmethyl)amine] catalyze the oxidation of olefins by H2O2 to yield epoxides and cis-diols. The addition of acetic acid inhibits olefin cis-dihydroxylation and enhances epoxidation for both 1 and 2. Reactions carried out at 0 degrees C with 0.5 mol % catalyst and a 1:1.5 olefin/H2O2 ratio in a 1:2 CH3CN/CH3COOH solvent mixture result in nearly quantitative conversions of cyclooctene to epoxide within 1 min. The nature of the active species formed in the presence of acetic acid has been probed at low temperature. For 2, in the absence of substrate, [(TPA)FeIII(OOH)(CH3COOH)]2+ and [(TPA)FeIVO(NCCH3)]2+ intermediates can be observed. However, neither is the active epoxidizing species. In fact, [(TPA)FeIVO(NCCH3)]2+ is shown to form in competition with substrate oxidation. Consequently, it is proposed that epoxidation is mediated by [(TPA)FeV(O)(OOCCH3)]2+, generated from O-O bond heterolysis of the [(TPA)FeIII(OOH)(CH3COOH)]2+ intermediate, which is promoted by the protonation of the terminal oxygen atom of the hydroperoxide by the coordinated carboxylic acid.  相似文献   

16.
[Ru(II)(F(20)-tpp)(CO)] (1, F(20)-tpp=meso-tetrakis(pentafluorophenyl)porphyrinato dianion) was covalently attached to poly(ethylene glycol) (PEG) through the reaction of 1 with PEG and sodium hydride in DMF. The water-soluble PEG-supported ruthenium porphyrin (PEG-1) is an efficient catalyst for 2,6-Cl(2)pyNO oxidation and PhI==NTs aziridination/amidation of hydrocarbons, and intramolecular amidation of sulfamate esters with PhI(OAc)(2). Oxidation of PEG-1 by m-CPBA in CH(2)Cl(2), dioxane, or water afforded a water-soluble PEG-supported dioxoruthenium(VI) porphyrin (PEG-2), which could react with hydrocarbons to give oxidation products in up to 80 % yield. The behavior of the two PEG-supported ruthenium porphyrin complexes in water was probed by NMR spectroscopy and dynamic light-scattering measurements. PEG-2 is remarkably stable to water. The second-order rate constants (k(2)) for the oxidation of styrene and ethylbenzene by PEG-2 in dioxane-water increase with water content, and the k(2) values at a water content of 70 % or 80 % are up to 188 times that obtained in ClCH(2)CH(2)Cl.  相似文献   

17.
Visible light irradiation of a reaction mixture containing dihydroxy coordinated tetraphenylporphyrinatotin(IV), cyclohexene and potassium hexachloroplatinate induced oxygenation of the cyclohexene under degassed conditions. In the reaction system, a water molecule served as the oxygen donor. Cyclohex-2-enol, 1,2-dichlorocyclohexane and 2-chlorocyclohexanol were the major oxidation products and the quantum yield was around 0.1. An experiment using H2 18O revealed that an 18O atom was quantitatively incorporated into the oxygenated products. The reaction was initially induced by an electron transfer from an excited triplet porphyrin to potassium hexachloroplatinate producing a cation radical of the porphyrin. Metal-oxo type complexes formed through deprotonation of the hydroxy group of the porphyrin cation radical were key reactive intermediates reacting with cyclohexene. Two kinds of the metal-oxo type complex reactive intermediate were kinetically demonstrated to be involved in the reaction system, producing different oxidation products from cyclohexene.  相似文献   

18.
An iron(II) complex with a pyridine-containing 14-membered macrocyclic (PyMAC) ligand L1 (L1 = 2,7,12-trimethyl-3,7,11,17-tetra-azabicyclo[11.3.1]heptadeca-1(17),13,15-triene), 1, was prepared and characterized. Complex 1 contains low-spin iron(II) in a pseudo-octahedral geometry as determined by X-ray crystallography. Magnetic susceptibility measurements (298 K, Evans method) and M?ssbauer spectroscopy (90 K, δ = 0.50(2) mm/s, ΔE(Q) = 0.78(2) mm/s) confirmed that the low-spin configuration of Fe(II) is retained in liquid and frozen acetonitrile solutions. Cyclic voltammetry revealed a reversible one-electron oxidation/reduction of the iron center in 1, with E(1/2)(Fe(III)/Fe(II)) = 0.49 V vs Fc(+)/Fc, a value very similar to the half-wave potentials of related macrocyclic complexes. Complex 1 catalyzed the epoxidation of cyclooctene and other olefins with H(2)O(2). Low-temperature stopped-flow kinetic studies demonstrated the formation of an iron(IV)-oxo intermediate in the reaction of 1 with H(2)O(2) and concomitant partial ligand oxidation. A soluble iodine(V) oxidant, isopropyl 2-iodoxybenzoate, was found to be an excellent oxygen atom donor for generating Fe(IV)-oxo intermediates for additional spectroscopic (UV-vis in CH(3)CN: λ(max) = 705 nm, ε ≈ 240 M(-1) cm(-1); M?ssbauer: δ = 0.03(2) mm/s, ΔE(Q) = 2.00(2) mm/s) and kinetic studies. The electrophilic character of the (L1)Fe(IV)═O intermediate was established in rapid (k(2) = 26.5 M(-1) s(-1) for oxidation of PPh(3) at 0 °C), associative (ΔH(?) = 53 kJ/mol, ΔS(?) = -25 J/K mol) oxidation of substituted triarylphosphines (electron-donating substituents increased the reaction rate, with a negative value of Hammet's parameter ρ = -1.05). Similar double-mixing kinetic experiments demonstrated somewhat slower (k(2) = 0.17 M(-1) s(-1) at 0 °C), clean, second-order oxidation of cyclooctene into epoxide with preformed (L1)Fe(IV)═O that could be generated from (L1)Fe(II) and H(2)O(2) or isopropyl 2-iodoxybenzoate. Independently determined rates of ferryl(IV) formation and its subsequent reaction with cyclooctene confirmed that the Fe(IV)-oxo species, (L1)Fe(IV)═O, is a kinetically competent intermediate for cyclooctene epoxidation with H(2)O(2) at room temperature. Partial ligand oxidation of (L1)Fe(IV)═O occurs over time in oxidative media, reducing the oxidizing ability of the ferryl species; the macrocyclic nature of the ligand is retained, resulting in ferryl(IV) complexes with Schiff base PyMACs. NH-groups of the PyMAC ligand assist the oxygen atom transfer from ferryl(IV) intermediates to olefin substrates.  相似文献   

19.
The systematic oxidation reactions of a wide range of alcohols have been carried out by using an iron porphyrin complex in order to understand their relation to cytochrome P-450 enzymes and to have a practical application to organic synthesis. The iron porphyrin complex catalyzed efficiently alcohol oxidation to the respective carbonyl compound via a high-valent iron-oxo porphyrin intermediate ((Porp)Fe=O+). Several mechanistic studies such as isotope 18O labeling, deuterium isotope effect, linear free energy relationship, and ring-opening of radical clock substrate, have suggested that the alcohol is oxidized by a sequence of reactions involving an alpha-hydroxyalkyl radical intermediate and oxygen rebound to form the gem-diol, dehydration of which yields the carbonyl compounds. Moreover, it has been proposed that a two-state reactivity mechanism can also be adopted for alcohol oxidation reactions in iron porphyrin model systems as exhibited by P-450 enzymes.  相似文献   

20.
A catalytic coupling reaction between 4-amino antipyrine and a N,N-disubstituted aniline derivative has been exploited in the indirect electrochemical detection of horseradish peroxidase (HRP) and of a biomimetic catalyst, the iron(III) sulfonated tetraphenyl porphyrin. In the presence of hydrogen peroxide and one of the two catalysts a cationic electroactive quinone-iminium dye P+ was formed and detected by linear scan voltammetry using a screen-printed electrode coated with a Nafion film. Detection limits of 10(-12) M for HRP and 4 x 10(-10) M for the iron porphyrin have been achieved. In conclusion the iron porphyrin is considered to be a promising alternative to the HRP label in enzyme immunoassays with electrochemical detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号