首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The current investigation is centered on the thermal decomposition of iron(II) acetyl acetonate, Fe(C5H7O2)2, in a closed cell at 700 degrees C, which is conducted under a magnetic field (MF) of 10 T. The product is compared with a similar reaction that was carried out without a MF. This article shows how the reaction without a MF produces spherical Fe3O4 particles coated with carbon. The same reaction in the presence of a 10 T MF causes the rejection of the carbon from the surface of pyramid-shaped Fe3O4 particles, increases the Fe3O4 particle diameter, forms separate carbon particles, and leads to the formation of an anisotropic (long cigarlike) orientation of Fe3O4 pyramids and C sheets. The macroscopic orientation of Fe3O4 pyramids+C sheets is stable even after the removal of an external MF. The suggested process can be used to fabricate large arrays of uniform wires comprised of some magnetic nanoparticles, and to improve the magnetic properties of nanoscale magnetic materials. The probable mechanism is developed for the growth and assembly behavior of magnetic Fe3O4 pyramids+C sheets under an external MF. The effect of an applied MF to synthesize morphologically different, but structurally the same, products with mesoscopic organization is the key theme of the present paper.  相似文献   

2.
Fe, Co, and Ni magnetic nanoparticles have been characterized using energy-selected imaging in a high-resolution transmission electron microscope. The samples comprised Fe/FeO x and Co/CoO x nanoparticles synthesized by inert gas evaporation and a Ni/C nano-composite prepared by a sonochemical method. All of the particles examined were found to be between 5 and 30 nm in size, with the Fe and Co crystals coated in 5-10 nm of metal oxide layer and the Ni metallic crystallites embedded in an amorphous carbon spherical matrix.  相似文献   

3.
齐巍  周德璧  陈素林  黄玉  程翔  Cheng  Xiang 《化学学报》2009,67(9):917-922
采用模板聚合物与金属离子配位-碳粉负载-还原方法得到的纳米复合材料P-M-C (P为聚合物, M为Fe, Co, Ni金属纳米颗粒, C为碳粉XC72). 利用红外光谱(IR)对中间产物进行了表征, 结果表明所制物质为目标产物P; 透射电镜(TEM)结果表明Fe, Co, Ni纳米粒子粒径多数为20~30 nm, 部分在10 nm左右, 纳米粒子均匀地分散在聚合物P上; 扫描电镜的能谱(SEM-EDS)分析结果证实了Fe, Co, Ni三种元素的存在. 通过循环伏安和计时电流法研究表明, 碱性介质中P-M-C复合催化剂对乙醇电化学氧化具有高催化活性和稳定性; 反向高效液相色谱(HPLC)结果表明乙醇氧化后的产物部分为乙醛和乙酸的混合物.  相似文献   

4.
A facile route for in situ synthesis of Co and Ni nanoparticles in a preorganized polyacrylamide gel is reported. Metal-polymer composites were prepared by gamma-irradiation at room temperature. The Co nanoparticles were roughly 3-5 nm in size and were stable in the polymer matrix in the presence of air. The presence of Co and Ni nanoparticles was established by their ability to transfer an electron to methyl viologen {paraquat: 1,1'-dimethyl 4,4'-dipyridinium dichloride; MV(2+) (Cl(-))(2)}. The Co and Ni nanoparticles were probed for their magnetic characteristics by a superconducting quantum interferometer device (SQUID) magnetometer and display a low superparamagnetic blocking temperature T(B) of about 13 and 10 K, respectively. The field-dependent magnetic behavior below T(B) displays the standard features corresponding to superparamagnetism, as expected for very small Co and Ni crystallites. This also suggests that particles are polycrystalline in nature.  相似文献   

5.
We present the results of the RAPET (reaction under autogenic pressure at elevated temperatures) dissociation of CoZr(2)(acac)(2)(O(i)Pr)(8) at 700 degrees C in a closed Swagelok cell under an applied magnetic field of 10 T. It produces a mixture of carbon-coated and noncoated metastable ZrO(2) nanoparticles, bare metallic Co nanoparticles, and bare carbon. The same reaction in the absence of a magnetic field produces spherical Co and ZrO(2) particles in sizes ranging from 11 to 16 nm and exhibiting, at room temperature, metastable phases: fcc for cobalt and a tetragonal phase for zirconia. The metastable phases of Co and ZrO(2) are manifested because of a carbon shell of approximately 4 nm thickness anchored to their surfaces. The effect of an applied magnetic field to synthesize morphologically different, but structurally the same, products is the key topic of the present paper.  相似文献   

6.
This work proposes the synthesis, characterization and investigation of the stabilization capabilities of chitosan doped with magnetic nanoparticles. Nanoparticles of Fe, Co, Co(II,III) oxide, Ni and Ni/Ag mixture in 2-propanol were synthesized by chemical liquid deposition and the incorporation on the polymeric matrix was performed by solvated metal atom dispersion. Colloids and nanoparticles supported on chitosan were characterized by ultraviolet, Fourier-transform infrared, thermogravimetric analysis, electron diffraction X-ray and magnetic behaviour; transmission and field electronic scanning electron microscopy. The particle size distribution of colloids ranges from 6 to 50 nm with low particle stability due to flocculation after 120 days. The nanoparticles supported on chitosan had a particle size distribution of approximately between 10 and 80 nm, with low particle distribution; however, these particles do not flocculate because the matrix increases the stabilization of nanoparticles. All compounds present superparamagnetic behaviour at low temperature.  相似文献   

7.
The effects of the external magnetic field has been investigated on the K XRF cross sections of Fe, Co, Ni, and some of their compounds by using an energy dispersive X-ray fluorescence spectrometer. The samples were irradiated by using the γ-rays of 59.537 keV emitted from an 241Am radioisotope source of 100 mCi. The samples were prepared from pure foil of Fe, Co, Ni, and some of their compounds. The external magnetic fields have been applied two opposite directions and the magnitude of the external magnetic field has been fixed at 0.400 T and −0.400 T. The measured K XRF cross sections have been compared with the calculated theoretical data and interpolated values of Puri et al. Our experimental results show that the K XRF cross sections have been affected by the external magnetic field.  相似文献   

8.
The electrophoretic deposition (EPD) of nickel (Ni), iron (Fe) and aluminum (Al) nanoparticles fabricated by an active hydrogen plasma evaporation method on the surface of carbon fibers was investigated, which will allow the obtained composites to be applied as practical catalysts or electrodes. SEM observations show that the Ni nanoparticles can build up a thick EPD coating with some cracks on the surface of carbon fibers, and the analyses of X-ray diffraction (XRD) and BET specific surface area indicate that fine particles from the as-received Ni powders were finally deposited after the EPD process without crystal growth. The surface oxidation of Fe and Al nanoparticles takes serious effect on the EPD process and the morphology of the as-prepared coatings.  相似文献   

9.
Magnetoresponsive hybrid capsules formed with polyelectrolytes, amphiphile bilayers and Fe(3)O(4) nanoparticles were fabricated by a colloid-templating technique. Melamine-formaldehyde (MF) core particles with polyelectrolyte multilayer shell were prepared by layer-by-layer assembly. Fe(3)O(4) nanoparticles were additionally deposited on the capsular surface. Hollow capsules were obtained by the removal of the MF core particles. Amphiphile bilayer was finally coated on the obtained hollow capsules. The deposition amount of the Fe(3)O(4) nanoparticles is variable by changing the concentration of Fe(3)O(4) dispersion using for preparation of capsules. Encapsulated dyes were released on-demand by irradiation with an alternating magnetic field, due to a phase transition in the amphiphile membrane, induced by heating of the magnetic nanoparticles. The release rate of the hybrid capsules was controllable through controlling the deposition amount of Fe(3)O(4) nanoparticles on the capsules.  相似文献   

10.
The magnetic properties of 10 nm diameter surfactant-coated cobalt (Co) nanoparticles in 1,2-dichlorobenzene (DCB) are investigated by a series of sequential magnetic moment (m) vs temperature (T) measurements. A rapid rise in magnetic moment around 250 K during warming and an abrupt drop at 234 K during cooling are observed when a nonsaturating external magnetic field is applied. Differential scanning calorimetry (DSC) measurements demonstrate that the rapid rise and abrupt drop in magnetization are associated with the melting and freezing of the solvent. Magnetic measurements of these Co nanoparticles in DCB are also used to probe their aging over a period of 70 days. The saturation magnetic moment of Co nanoparticles in DCB stored in air at room temperature decreases by nearly 40% over 70 days. Transmission electron microscopy (TEM) characterizations are reported to show the time evolution in the size, shape, and crystalline structures of DCB-immersed nanoparticles.  相似文献   

11.
Abstract

In the present work, microstructure and superparamagnetic properties of two types of carbon‐coated magnetic Ni and Fe nanoparticles [Ni(C) and Fe(C)] are reviewed. High‐resolution transmission electron microscopy (HRTEM), electron diffraction (SAED), and x‐ray diffraction (XRD) analyses have been used to reveal the distinct structural morphologies of Ni and Fe nanoparticles. Moreover, novel carbon‐coated Ni nanoparticle assemblies offer us great opportunities for studying the mechanism of superparamagnetism in particle assemblies. Magnetization measurements [M(T) and M(H) curves] for assemblies of Ni nanoparticles indicate that modified superparamagnetic properties at T > T B, have been found in the assemblies of Ni(C) particles. The blocking temperature, T B, is determined to be near 115K under a certain applied field. Above T B, the magnetization M(H, T) can be described by the classical Langevin function L using the relation, M/M s (T = 0) = coth (μH/kT) ? kTH. It is suggested that these assemblies of carbon‐coated Ni nanoparticles have typical single‐domain, field‐dependent superparamagnetic relaxation properties. Finally, Mössbauer spectra and hyperfine magnetic fields at room temperature for the assemblies of Fe(C) nanoparticles confirm their distinct nanophases that were detected by structural analysis. Modified superparamagnetic relaxation is observed in the assemblies of Fe(C) nanoparticles, which is attributed to the nanocrystalline nature of the carbon‐coated nanoparticles.  相似文献   

12.
We report a novel method to prepare patterns of nanoparticles over large areas of the substrate. This method is based on the adsorption of the negatively charged nanoparticles dispersed in an aqueous subphase onto a monolayer of the phospholipid dipalmitoyl-l-α-phosphatidylcholine (DPPC) at the air-water interface. It has been used to prepare patterns of nanoparticles of Prussian blue analogues (PBA) of different size (K(0.25)Ni[Fe(CN)(6)](0.75) (NiFe), K(0.25)Ni[Cr(CN)(6)](0.75) (NiCr), K(0.25)Ni[Co(CN)(6)](0.75) (NiCo), Cs(0.4)Co[Cr(CN)(6)](0.8) (CsCoCr), and Cs(0.4)Co[Fe(CN)(6)](0.9) (CsCoFe)). The behavior of DPPC monolayer at the air-water interface in the presence of the subphase of PBA nanoparticles has been studied by the compression isotherms and Brewster angle microscopy (BAM) images. Atomic force microscopy (AFM) of the transferred films on mica substrates shows that patterns of the nanoparticles are observed for a 10(-4) M concentration of the subphase, based on the nanoparticle precursors, at surface pressures between 1 and 6 mN/m and transfer velocities from 10 to 80 mm/min. Vertical, horizontal, or tilted fringes of the nanoparticles with respect to the transfer direction can be obtained depending on the transfer velocity and surface pressure.  相似文献   

13.
Single-layer (SL) carbon tubes were produced by arc evaporation of graphite rods containing iron-group metals (Fe, Co, Ni, Fe/Co, Co/Ni, Fe/Ni) under He and Ar gas. Transmission electron microscopy (TEM) revealed that these elemental and binary metals, excluding Fe which need a special atmosphere (a mixture of Ar and CH4), showed catalytic activity producing SL tubes under pure inactive gases. Fe/Ni alloy was the most effectual catalysts for producing SL tubes. The highest abundance of SL tubes in raw soot was estimated to be ~ 10% from TEM observation. Smoke particles directly caught on TEM grids near an evaporation source during arcburning were also investigated, and it was suggested that small metal particles were first formed in the gas phase and then SL tubes grew from them.  相似文献   

14.
We report the first magnetic study of pure and metastable hexagonal close-packed (hcp) Ni nanoparticles (sample 1). We also produced stable face-centered cubic (fcc) Ni nanoparticles, as mixtures with the hcp Ni nanoparticles (samples 2 and 3). We compared the magnetic properties of the hcp Ni nanoparticles with those of the fcc Ni nanoparticles by observing the evolution of magnetic properties from those of the hcp Ni nanoparticles to those of the fcc Ni nanoparticles as the number of fcc Ni nanoparticles increased from sample 1 to sample 3. The blocking temperature (T(B)) of the hcp Ni nanoparticles is approximately 12 K for particle diameters ranging between 8.5 and 18 nm, whereas those of the fcc Ni nanoparticles are 250 and 270 K for average particle diameters of 18 and 26 nm, respectively. The hcp Ni nanoparticles seem to be antiferromagnetic for T < T(B) and paramagnetic for T > T(B). This is very different from the fcc Ni nanoparticles, which are ferromagnetic for T < T(B) and superparamagnetic for T > T(B). This unusual magnetic state of the metastable hcp Ni nanoparticles is likely related to their increased bond distance (2.665 angstroms), compared to that (2.499 angstroms) of the stable fcc Ni nanoparticles.  相似文献   

15.
We observe a large magnetocaloric effect in monodisperse Ni and NicoreAgshell nanoparticles in the superparamagnetic region. The organically passivated Ni nanospheres show a large magnetic entropy change of 0.9 J kg?1 K for a 3 T magnetic field change. In comparison to the surfactant‐coated Ni nanoparticles, the NicoreAgshell nanoparticles show an enhanced coercivity, magnetization, and magnetocaloric effect (1.3 kg K for a 3 T magnetic field change). The coercivity at 10 K increases from 360 Oe for Ni nanoparticles to nearly 610 Oe for NicoreAgshell particles. This large enhancement is attributed to the enhanced inter‐particle interaction, which is mediated by the metallic shell, over the relatively weaker dipolar interaction in the surfactant‐coated Ni nanoparticles, and to modification of the surface spin structure.  相似文献   

16.
Jiang L  Choi HJ  Feng XL  Lu TB  Long JR 《Inorganic chemistry》2007,46(6):2181-2186
Reactions between K[TpFe(CN)3] (Tp- = hydrotris(1-pyrazolyl)borate) and M(ClO4)2 x 6H2O (M = Co or Ni) in a mixture of acetonitrile and methanol afford, upon crystallization via THF vapor diffusion, [Tp8(H2O)12Co6Fe8(CN)24](ClO4)4.12THF x 7H2O (1) and [Tp8(H2O)12Ni6Fe8(CN)24](ClO4)4.12THF x 7H2O (2). Both compounds contain cyano-bridged clusters with a face-centered cubic geometry, wherein octahedral CoII or NiII centers are situated at the face-centering sites. The results of variable-temperature magnetic susceptibility measurements indicate the presence of ferromagnetic exchange coupling within both molecules to give ground states of S = 7 and 10, respectively. Low-temperature magnetization data reveal significant zero-field splitting, with the best fits for the Co6Fe8 and Ni6Fe8 clusters yielding D = -0.54 and 0.21 cm-1, respectively; ac magnetic susceptibility measurements performed on both samples showed no evidence of the slow relaxation effects associated with single-molecule magnet behavior.  相似文献   

17.
We synthesized magnetic spinel ferrites from trimetallic single-source precursors. Fe(II), Co(II), and Ni(II) ferrite nanoparticles in the range of 9-25 nm were synthesized by solvothermal decomposition of trimetallic acetate complex precursors in benzyl ether in the presence of oleic acid and oleylamine, using 1,2-dodecanediol as the reducing agent. For comparison, spinel ferrite nanoparticles were synthesized by stoichiometric mixtures of metal acetate or acetylacetonate salts. The nanoparticles (NP) were characterized by TEM, DLS, powder XRD, and Raman spectroscopy; and their magnetic properties were characterized by ZFC-FC and M(H) measurements. The ferrite-NP were more homogeneous and had a narrower size distribution when trimetallic complexes were used as precursors. As a consequence, the magnetic properties of these ferrite-NP are closer to the aimed room temperature superparamagnetic behavior, than are those of other ferrites obtained by a mixture of salts.  相似文献   

18.
Tris(ferrocenoyl)acetonates of some lanthanides were obtained by homophase synthesis. The compositions and structures of the complexes obtained were proved by elemental analysis, electronic absorption and IR spectroscopy. Their solubilities in some aprotic solvents and thermal stabilities (by the thermographic method) were determined. The thermal properties of lanthanide tris(ferrocenoyl)acetonates were compared with those of analogous lanthanide tris(acetyl)acetonates.  相似文献   

19.
In recent years, magnetic nanoalloys (MNAs) have attracted many attentions from all over the world, due to their potential applications in the broad fields of magneto-optics, data storage, engineering, and biology. Among these MNAs, Pt–M (M = Fe, Co, Ni) MNAs have been considered to be the most promising ones, due to their superparamagnetism and response to a magnetic field. Here, we firstly review the experimental work on the synthesis, characterization, and magnetic properties of Pt–Fe, Pt–Co, and Pt–Ni MNAs. Then, we discuss the recent theoretical work on Pt–Fe, Pt–Co, and Pt–Ni MNAs. Moreover, we also review the main applications of Pt–Fe, Pt–Co, and Pt–Ni MNAs in the fields of biology, information storage, and magnetic separation. It is found that the size, shape, and composition of Pt–Fe, Pt–Co, and Pt–Ni MNAs play a critical role on their fundamental magnetic properties from both the experimental and theoretical points of view. It is expected that this review could be a valuable resource for both experimental and theoretical researchers, who are interested in Pt-based MNAs.  相似文献   

20.
A principally new exploit of ionic liquids as an alternative reaction medium in the synthesis of cyano-bridged coordination-polymer nanoparticles is reported. Stable colloid solutions containing nanoparticles of cyano-bridged molecule-based magnets, M)[Fe(CN)6]2/[RMIM][BF4] (M2+=Ni, Cu, Co) and Fe4[Fe(CN)6]3/[RMIM][BF4] (R=1-butyl (BMIM), 1-decyl (DMIM)), were prepared in the corresponding 1-R-3-methylimidazolium tetrafluoroborate [RMIM][BF4], which acts as both a stabilising agent and a solvent. By varying the length of the N-alkyl chain on the imidazolium cation of [RMIM]+ and the temperature, the growing process can be controlled to produce nanoparticles of different sizes. By studying the magnetic properties of frozen colloids it is shown that the relaxation of magnetisation is strongly influenced by interparticle interactions, which leads to the appearance of spin-glass-like dynamics in these systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号