首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction of U(NEt(2))(4) with HS-2,4,6-(t)Bu(3)C(6)H(2) (HSMes) gave U(SMes)(3)(NEt(2))(py) (1), whereas similar treatment of U[N(SiMe(3))SiMe(2)CH(2)][N(SiMe(3))(2)](2) afforded U(SMes)[N(SiMe(3))(2)](3) (2) and U(SMes)(3)[N(SiMe(3))(2)]. The first neutral homoleptic uranium(IV) thiolate to have been crystallographically characterized, U(SMes)(4) (4), was isolated from the reaction of U(BH(4))(4) and KSMes. The first homoleptic thiolate complex of uranium(III), U(SMes)(3) (5), was synthesized by protonolysis of U[N(SiMe(3))(2)](3) with HSMes in cyclohexane. The crystal structure of 5 exhibits the novel eta(3) ligation mode for the arylthiolate ligand. Comparison of the crystal structure of 5 with those of the isomorphous lanthanide congeners Ln(SMes)(3) (Ln = La, Ce, Pr, and Nd) indicates that the U-S, U-C(ipso)(), and U-C(ortho)() bond lengths are shorter than the corresponding ones in the 4f-element analogues, when taking into account the variation in the ionic radii of the metals. The distance between the uranium and the carbon atoms involved in the U...H-C epsilon agostic interaction of each thiolate ligand is shorter, by approximately 0.05 A, than that expected from a purely ionic bonding model. The lanthanide(III)/actinide(III) differentiation was analyzed by density functional theory (DFT). The nature of the M-S bond is shown to be ionic strongly polarized at the sulfur for M = U and iono-covalent (i.e. strongly ionic with low orbital interaction), for M = Ln. The strength of the U...H-C epsilon agostic interaction is proposed to be controlled by the maximization of the interaction between U(+) and S(-) under steric constraints. The eta(3) ligation mode of the arylthiolate ligand is also obtained from DFT.  相似文献   

2.
A mechanistic study of intramolecular hydroamination/cyclization catalyzed by tetravalent organoactinide and organozirconium complexes is presented. A series of selectively substituted constrained geometry complexes, (CGC)M(NR2)Cl (CGC = [Me2Si(eta5-Me4C5)(tBuN)]2-; M = Th, 1-Cl; U, 2-Cl; R = SiMe3; M = Zr, R = Me, 3-Cl) and (CGC)An(NMe2)OAr (An = Th, 1-OAr; An = U, 2-OAr), has been prepared via in situ protodeamination (complexes 1-2) or salt metathesis (3-Cl) in high purity and excellent yield and is found to be active precatalysts for intramolecular primary and secondary aminoalkyne and aminoalkene hydroamination/cyclization. Substrate reactivity trends, rate laws, and activation parameters for cyclizations mediated by these complexes are virtually identical to those of more conventional (CGC)MR2 (M = Th, R = NMe2, 1; M = U, R = NMe2, 2; M = Zr, R = Me, 3), (Me2SiCp' '2)UBn2 (Cp' ' = eta5-Me4C5; Bn = CH2Ph, 4), Cp'2AnR2 (Cp' = eta5-Me5C5; R = CH2SiMe3; An = Th, 5, U, 6), and analogous organolanthanide complexes. Deuterium KIEs measured at 25 degrees C in C6D6 for aminoalkene D2NCH2C(CH3)2CH2CHCH2 (11-d2) with precatalysts 2 and 2-Cl indicate that kH/kD = 3.3(5) and 2.6(4), respectively. Together, the data provide strong evidence in these systems for turnover-limiting C-C insertion into an M-N(H)R sigma-bond in the transition state. Related complexes (Me2SiCp' '2)U(Bn)(Cl) (4-Cl) and Cp'2An(R)(Cl) (R = CH2(SiMe3); An = Th, 5-Cl; An = U, 6-Cl) are also found to be effective precatalysts for this transformation. Additional arguments supporting M-N(H)R intermediates vs M=NR intermediates are presented.  相似文献   

3.
The synthesis and characterisation of novel Li and Yb complexes is reported, in which the monoanionic beta-diketiminato ligand has been (i) reduced (SET or 2 [times] SET), (ii) deprotonated, or (iii) C-N bond-cleaved. Reduction of the lithium beta-diketiminate Li(L(R,R'))[L(R,R')= N(SiMe(3))C(R)CHC(R')N(SiMe(3))] with Li metal gave the dilithium derivative [Li(tmen)(mu-L(R,R'))Li(OEt(2))](R = R'= Ph; or, R = Ph, R[prime or minute]= Bu(t)). When excess of Li was used the dimeric trilithium [small beta]-diketiminate [Li(3)(L(R,R[prime or minute]))(tmen)](2)(, R = R'= C(6)H(4)Bu(t)-4 = Ar) was obtained. Similar reduction of [Yb(L(R,R'))(2)Cl] gave [Yb[(mu-L(R,R'))Li(thf)](2)](, R = R[prime or minute]= Ph; or, R = R'= C(6)H(4)Ph-4 = Dph). Use of the Yb-naphthalene complex instead of Li in the reaction with [Yb(L(Ph,Ph))(2)] led to the polynuclear Yb clusters [Yb(3)(L(Ph,Ph))(3)(thf)], [Yb(3)(L(Ph,Ph))(2)(dme)(2)], or [Yb(5)(L(Ph,Ph))(L(1))(L(2))(L(3))(thf)(4)] [L(1)= N(SiMe(3))C(Ph)CHC(Ph)N(SiMe(2)CH(2)), L(2)= NC(Ph)CHC(Ph)H, L(3)= N(SiMe(2)CH(2))] depending on the reaction conditions and stoichiometry. The structures of the crystalline complexes 4, 6x21/2(hexane), 5(C(6)D(6)), and have been determined by X-ray crystallography (and have been published).  相似文献   

4.
The synthesis and characterisation of the first neutral cerium dialkyl dithiocarbamate complexes, using a novel oxidative displacement of the amido ligands of [Ce[N(SiMe3)2]3] by tetraalkylthiuram disulfides [R2NC(S)S]2(R = Me, Et) in thf solution, are reported. In the absence of other donors, the complexes [Ce(kappa2-S2CNMe2)3(thf)2] and Ce(kappa2-S2CNEt2)3) 3 were obtained. The addition of a polypyridyl ligand allowed easy access to a range of complexes of general formula [Ce(kappa2-S2CNR2)3(L[intersection]L)][R = Me and L([intersection])L = 2,2'-bipy (4), or 4,7-diphenyl-1,10-phenanthroline (6); or R = Et and L[intersection]L = 2,2'-bipy (5)]. Brief exposure of the Ce(III) dithiocarbamate to oxygen gas afforded in high yield the diamagnetic, crystalline Ce(IV) dithiocarbamate [Ce(kappa2-S2CNEt2)4)] 7. The neodymium (8) and terbium (10) complexes, isoleptic with 2, were prepared from the appropriate 4f metal (Ln) bis(trimethylsilyl)amide [Ln[pN(SiMe3)2]3][Ln = Nd or Tb (9)] and [Me2NC(S)S]2. The structures of the crystalline complexes, 2, 4, 6, 7, 9 and 10 have been determined by X-ray crystallography. Some evidence has been obtained for the formation of the cerium(IV) complex Ce[N(SiMe3)2]2(kappa2-S2CNMe2)2. The cerium(IV) complex 7 has the metal coordinated to eight sulfur atoms of four planar chelating S2CNC2 moities and its geometry is intermediate between dodecahedral and square prismatic; the mean Ce-S bond length of 2.803 A in 7 compares with the 2.950 A in the Ce(III) complex 2.  相似文献   

5.
Several iron(III) complexes incorporating diamidoether ligands are described. The reaction between [Li(2)[RN(SiMe(2))](2)O] and FeX(3) (X=Cl or Br; R=2,4,6-Me(3)Ph or 2,6-iPr(2)Ph) form unusual ate complexes, [FeX(2)Li[RN(SiMe(2))](2)O](2) (2, X=Cl, R=2,4,6-Me(3)Ph; 3, X=Br, R=2,4,6-Me(3)Ph; 4, X=Cl, R=2,6-iPr(2)Ph) which are stabilized by Li-pi interactions. These dimeric iron(III)-diamido complexes exhibit magnetic behaviour characteristic of uncoupled high spin (S= 5/2 ) iron(III) centres. They also undergo halide metathesis resulting in reduced iron(II) species. Thus, reaction of 2 with alkyllithium reagents leads to the formation of iron(II) dimer [Fe[Me(3)PhN(SiMe(2))](2)O](2) (6). Similarly, the previously reported iron(III)-diamido complex [FeCl[tBuN(SiMe(2))](2)O](2) (1) reacts with LiPPh(2) to yield the iron(II) dimer [Fe[tBuN(SiMe(2))](2)O](2) but reaction with LiNPh(2) gives the iron(II) product [Fe(2)(NPh(2))(2)[tBuN(SiMe(2))](2)O] (5). Some redox chemistry is also observed as side reactions in the syntheses of 2-4, yielding THF adducts of FeX(2): the one-dimensional chain [FeBr(2)(THF)(2)](n) (7) and the cluster [Fe(4)Cl(8)(THF)(6)]. The X-ray crystal structures of 3, 5 and 7 are described.  相似文献   

6.
The heterobimetallic actinide compound UO(2)Ce(H(2)O)[C(6)H(4)(PO(3)H)(2)](2)·H(2)O was prepared via the hydrothermal reaction of U(VI) and Ce(IV) in the presence of 1,2-phenylenediphosphonic acid. We demonstrate that this is a kinetic product that is not stable with respect to decomposition to the monometallic compounds. Similar reactions have been explored with U(VI) and Ce(III), resulting in the oxidation of Ce(III) to Ce(IV) and the formation of the Ce(IV) phosphonate, Ce[C(6)H(4)(PO(3)H)(PO(3)H(2))][C(6)H(4)(PO(3)H)(PO(3))]·2H(2)O, UO(2)Ce(H(2)O)[C(6)H(4)(PO(3)H)(2)](2)·H(2)O, and UO(2)[C(6)H(4)(PO(3)H)(2)](H(2)O)·H(2)O. In comparison, the reaction of U(VI) with Np(VI) only yields Np[C(6)H(4)(PO(3)H)(2)](2)·2H(2)O and aqueous U(VI), whereas the reaction of U(VI) with Pu(VI) yields the disordered U(VI)/Pu(VI) compound, (U(0.9)Pu(0.1))O(2)[C(6)H(4)(PO(3)H)(2)](H(2)O)·H(2)O, and the Pu(IV) phosphonate, Pu[C(6)H(4)(PO(3)H)(PO(3)H(2))][C(6)H(4)(PO(3)H)(PO(3))]·2H(2)O. The reactions of Ce(IV) with Np(VI) yield disordered heterobimetallic phosphonates with both M[C(6)H(4)(PO(3)H)(PO(3)H(2))][C(6)H(4)(PO(3)H)(PO(3))]·2H(2)O (M = Ce, Np) and M[C(6)H(4)(PO(3)H)(2)](2)·2H(2)O (M = Ce, Np) structures, as well as the Ce(IV) phosphonate Ce[C(6)H(4)(PO(3)H)(PO(3)H(2))][C(6)H(4)(PO(3)H)(PO(3))]·2H(2)O. Ce(IV) reacts with Pu(IV) to yield the Pu(VI) compound, PuO(2)[C(6)H(4)(PO(3)H)(2)](H(2)O)·3H(2)O, and a disordered heterobimetallic Pu(IV)/Ce(IV) compound with the M[C(6)H(4)(PO(3)H)(PO(3)H(2))][C(6)H(4)(PO(3)H)(PO(3))]·2H(2)O (M = Ce, Pu) structure. Mixtures of Np(VI) and Pu(VI) yield disordered heterobimetallic Np(IV)/Pu(IV) phosphonates with both the An[C(6)H(4)(PO(3)H)(PO(3)H(2))][C(6)H(4)(PO(3)H)(PO(3))]·2H(2)O (M = Np, Pu) and An[C(6)H(4)(PO(3)H)(2)](2)·2H(2)O (M = Np, Pu) formulas.  相似文献   

7.
Reaction of aminosilanetriol RSi(OH)(3) (1) (R = (2,6-i-Pr(2)C(6)H(3))N(SiMe(3))) with diethyl zinc at room temperature in 1:1 stoichiometric ratio affords [(THF)Zn(O(2)(OH)SiR)](4) (2) (R = (2,6-i-Pr(2)C(6)H(3))N(SiMe(3))) in good yield. The single-crystal X-ray diffraction studies reveal that 2 is monoclinic, P2(1), with a = 17.117(3) A, b = 16.692(5) A, c = 17.399(4) A, alpha = gamma = 90 degrees, beta = 91.45(7) degrees, and Z = 2. The molecular structure of 2 contains two puckered eight-membered Zn(2)Si(2)O(4) rings, which are connected by the Zn-O bonds and form two planar four-membered Zn(2)O(2) rings. Compound 2 contains an unreacted hydroxyl group on each silicon atom, and hence, we carried out the reactions of 2 with dimethylzinc and methyllithium to form [Zn(4)(THF)(4)(MeZn)(4)(O(3)SiR)(4)] (3) (R = (2,6-i-Pr(2)C(6)H(3))N(SiMe(3))) and [(L)ZnLi(O(3)SiR)](4) (4) (L = 1,4-(Me(2)N)(2)C(6)H(4), R = (2,6-i-Pr(2)C(6)H(3))N(SiMe(3))), respectively. This suggested that 2 could be an intermediate product formed during the synthesis of 3 and 4.  相似文献   

8.
Reaction of the triamido stannate MeSi[SiMe(2)N[(R)-CHMePh]](3)SnLi (1) with 0.5 molar equivalent of [RhCl(olefin)(2)](2) (olefin = COE, C(2)H(4)) or [RhCl(P(i)Pr(3))(2)](2) yielded the Rh-Sn complexes [MeSi[SiMe(2)N[(R)-CHMePh]](2)[SiMe(2)N[(R)-CHMe(eta(6)-C(6)H(5))]SnRh(L)] (L = COE: 2a, C(2)H(4): 2b, P(i)Pr(3) 3); their intramolecular eta(6)-coordination, along with the tin-rhodium bond, represents the first "ansa" pi-arene/stannate system.  相似文献   

9.
The reaction of phosphanido complexes [Nb(η(5)-C(5)H(4)SiMe(3))(2)(L)(PPh(2))] [L = CO (1), CNXylyl (2)] with early transition metal halides in high oxidation states has been carried out. New bimetallic niobocene complexes [{Nb(η(5)-C(5)H(4)SiMe(3))(2)(L)}(μ-PPh(2))(MCl(5))] [M = Nb, L = CO (3), L = CNXylyl (4); M = Ta, L = CO (5), L = CNXylyl (6)] have been successfully synthesized by the reaction with [MCl(5)](2) (M = Nb or Ta). In a similar way [{Nb(η(5)-C(5)H(4)SiMe(3))(2)(L)}(μ-PPh(2))(MCl(4))] [M = Ti, L = CO (13), CNXylyl (14); M = Zr, L = CO (15), CNXylyl (16)] were synthesized using MCl(4) (M = Ti or Zr). Solutions of complexes 4-6 in chloroform produced new ionic derivatives [Nb(η(5)-C(5)H(4)SiMe(3))(2)(P(H)Ph(2))(L)] [MCl(6)] [M = Nb, L = CO (7), L = CNXylyl (8); M = Ta, L = CO (9), L = CNXylyl (10)]. Ionic complexes [Nb(η(5)-C(5)H(4)SiMe(3))(2)(P(Cl)Ph(2))(L)] [NbCl(4)O(thf)] [L = CO (11), CNXylyl (12)] were formed from solutions in thf - rapidly in the case of 3 but more slowly for 4. New heterometallic complexes [Nb(η(5)-C(5)H(4)SiMe(3))(2)(L)(μ-PPh(2)){(Ti(η(5)-C(5)R(5))Cl(3)}] [R = H, L = CO (17), CNXylyl (18); R = CH(3), L = CO (19), CNXylyl (20)] were synthesized by the reaction of 1 or 2 with [Ti(η(5)-C(5)R(5))Cl(3)] (R = H or CH(3)). All of these compounds were characterized by IR and multinuclear NMR spectroscopy, and the molecular structures of 9 and 12 were determined by single-crystal X-ray diffraction.  相似文献   

10.
Reduction at ambient temperature of each of the lithium benzamidinates [Li(L(1))(tmeda)] or [{Li(L(2))(OEt(2))(2)}(2)] with four equivalents of lithium metal in diethyl ether or thf furnished the brown crystalline [Li(3)(L(1))(tmeda)] (1) or [Li(thf)(4)][Li(5)(L(2))(2)(OEt(2))(2)] (2), respectively. Their structures show that in each the [N(R(1))C(R(3))NR(2)](3-) moiety has the three negative charges largely localised on each of N, N' and R = Aryl); a consequence is that the "aromatic" 2,3- and 5,6-CC bonds of R(3) approximate to being double bonds. Multinuclear NMR spectra in C(6)D(6) and C(7)D(8) show that 1 and 2 exhibit dynamic behaviour. [The following abbreviations are used: L(1) = N(SiMe(3))C(Ph)N(SiMe(3)); L(2) = N(SiMe(3))C(C(6)H(4)Me-4)N(Ph); tmeda = (Me(2)NCH(2)-)(2); thf = tetrahydrofuran.] This reduction is further supported by a DFT analysis.  相似文献   

11.
The crystal structures of two trisiodide octacoordinated uranium(III) complexes of tris[(2-pyrazinyl)methyl]amine (tpza), which differ only by the ligand occupying the eighth coordination site (thf or MeCN), and of their lanthanum(III) analogues have been determined. In the acetonitrile adducts the M-N(pyrazine) distances are very similar for U(III) and La(III), while the U-N(acetonitrile) distance is 0.05 A shorter than the La-N(acetonitrile) distance. In the [M(tpza)I(3)(thf)] complexes in which the monodentate acetonitrile ligand, a weak pi-acceptor ligand, is replaced by a thf molecule, a sigma-donor only, the mean value of the distance U-N(pyrazine) is 0.05 A shorter than the mean value of the La-N(pyrazine) distance. Since we are comparing isostructural compounds of ions with very similar ionic radii, these differences indicate the presence of a stronger M-N interaction in the U(III) complexes and therefore suggest the presence of a covalent contribution to the U-N bonding. The selectivity of the tpza ligand toward U(III) complexation (with respect to that of La(III)) in the presence of sigma-donor-only ligands has been quantified by the value of K(U(tpza))/K(La(tpza)) measured to be 3.3 +/- 0.5. The analysis of the metal-N-donor ligand bonding was carried out by a quasi-relativistic density functional theory study on small model compounds, of formula I(3)M-L (M = La, Nd, U; L = acetonitrile, pyrazine) and I(3)M-(pyrazine)(3) (M = La, U). The structural data obtained from geometry optimizations on these systems reproduce experimental trends, i.e., a decrease in the M-N distance from La to U, combined with an increase of the C-N distance in the acetonitrile derivatives. A detailed orbital analysis carried out on the resulting optimized complexes did not reveal any orbital interaction between the trivalent lanthanide cations (Ln(3+)) and the N-donor ligands. In contrast, a back-donation electron transfer from 5f U(3+) orbitals to the pi* virtual orbital of the ligand was observed for both acetonitrile and pyrazine. Evaluation of the total bonding energy between the MI(3) and L fragments shows that this orbital interaction leads to a stabilization of the uranium(III) system compared to the lanthanide species.  相似文献   

12.
A series of trivalent mono- and tris(ligand) lanthanide complexes of a sulfur-bridged binaphthol ligand [1,1'-S(2-HOC(10)H(4)Bu(t)(2)-3,6)(2)] H(2)L(SN), have been prepared and characterised both structurally and photophysically. The H(2)L(SN) ligand provides an increased steric bulk and offers an additional donor atom (sulfur) as compared with 1,1'-binaphthol (BINOL), a ligand commonly used to complex Lewis acidic lanthanide catalysts. Reaction of the diol H(2)L(SN) with [Sm[N(SiMe(3))(2)](3)] affords silylamido- and amino- derivatives [Sm(L(SN))[N(SiMe(3))(2)][HN(SiMe(3))(2)]] and the crystallographically characterised [Sm(L(SN))[N(SiMe(3))(2)](thf)(2)] with different degrees of structural rigidity, depending on the presence of coordinating solvents. The binaphthyl groups of the L(SN) ligand act as sensitisers of the metal centred emission, which is observed for the Eu(III) and Sm(III) complexes studied. We have therefore sought to use emission spectroscopy as a non-invasive technique to monitor a monomer-dimer equilibrium in these complexes. A dramatic difference between the emission properties of the unreactive dimeric Sm(III) aryloxide complex, the solvated monomeric analogues and the amido adduct demonstrated the potential use of such a technique. For a few representative lanthanides (Ln = Sm, Eu and Y) the reaction of the dilithium salt Li(2)L(SN) with either [Ln[N(SiMe(3))(2]3)] or [LnCl(3)(thf)(3)] affords only the homoleptic complex [Li(S)(3)][LnL(SN)(3)](S = thf or diethyl ether); we report the structural characterisation of the Sm complex. However, the reactions of this dipotassium salt K(2)L(SN) with [Sm[N(SiMe(3))(2)](3)] or [SmCl(3)(thf)(3)] give only [SmL(SN)N(SiMe(3))(2)], or intractable mixtures respectively, in which no (tris)binaphtholate is observed. The only isolable lanthanide-L(SN) halide adduct so far is [YbL(SN)I(thf)].  相似文献   

13.
Reaction of H(3)L(1), the Schiff base condensate of tris(2-aminoethyl)amine with three equivalents of 5-methyl-1H-pyrazole-3-carboxaldehyde, with manganese(II)perchlorate or iron(II)tetrafluoroborate results in the isolation of [MH(3)L(1)]X(2) (M = Mn and X = ClO(4) and M = Fe and X = BF(4)). These complexes are high spin d(5) and d(6), respectively, as inferred from the long M-N bond distances obtained by single crystal X-ray diffraction for both and variable temperature magnetic susceptibility and M?ssbauer spectroscopy for the iron complex. Aerobic treatment of a solution of [CoH(3)L(1)](2+) with three equivalents of potassium hydroxide produced [CoL(1)]. Homonuclear pseudo-dimers were prepared by the aerobic reaction of [FeH(3)L(1)](BF(4))(2) with 1.5 equivalents of potassium hydroxide to give {[FeH(1.5)L(1)](BF(4))}(2) or by the metathesis reaction of [FeH(2)L(1)][FeHL(1)](ClO(4))(2) with sodium hexafluorophosphate to give [FeH(3)L(1)][FeL(1)](PF(6))(2). The complexes were characterized by EA, IR, ESI-MS, variable temperature single crystal x-ray diffraction and M?ssbauer spectroscopy. The iron(III) atom is low spin while the iron(II) atom is spin crossover. Heteronuclear pseudo-dimers were prepared by the 1:1 reaction of [FeH(3)L(1)](BF(4))(2) or [MnH(3)L(1)](ClO(4))(2) with [CoL(1)]. [MH(3)L(1)][CoL(1)](X)(2) (M = Fe and X = BF(4) or M = Mn and X = ClO(4)), were characterized by IR, EA, variable temperature single crystal X-ray diffraction and M?ssbauer spectroscopy in the iron case. The data support a spin crossover and high spin assignment for the iron(II) and manganese(II), respectively. DFT calculations demonstrate that the spin state of the iron(II) atom in {[FeH(3)L(1)][FeL(1)]}(2+) changes from high spin to low spin as the iron(II)-iron(III) distance decreases. This is supported by experimental results and is a result of hydrogen bonding interactions which cause a significant compression of the M(II)-N(pyrazole) bond distances.  相似文献   

14.
The mono and bis(cyclopentadienyl) compounds [M(C5H4Bu t)I2] and [M(C5H4Bu t)2I](M = U, La, Ce, Nd) were formed in thf by comproportionation reactions of [M(C5H4Bu t)3] and LnI3 or [UI3(L)4](L = thf or py) in the molar ratio of 1 : 2 and 2 : 1, respectively, while treatment of [UI(3)(py)(4)] or LnI(3)(Ln = La, Ce, Nd) with 1 or 2 mol equivalents of LiC5H4Bu t in thf afforded the [M(C5H4Bu t)I2] and [M(C5H4Bu t)2I2]- compounds, respectively. The X-ray crystal structures of [M(C5H4Bu t)I2(py)3](M = U, La, Ce, Nd), [{Ce(C5H4Bu t)2(mu-I)}2] and [M(C5H4Bu t)2I(py)2](M = U, Nd) have been determined; the differences between the average M-C distances in the mono(cyclopentadienyl) complexes correspond to the variation in the ionic radii of the trivalent uranium and lanthanide ions while the U-N and U-I bond lengths seem to be smaller than those predicted from a purely ionic bonding model. The distinct affinity of the cyclopentadienyl ligands towards Ln(III) and U(III) was revealed by two series of competing reactions: the ligand exchange reactions between [Ln(C5H4Bu t)(n')I(3-n')](Ln = La, Ce, Nd) and [U(C5H4Bu t)(n')I(3-n')] species (1 < or = n'+n' =n < or = 5), and the addition of n mol equivalents of LiC(5)H(4)Bu(t)(1 [less-than-or-equal]n[less-than-or-equal] 5) to a 1 : 1 mixture of LnI3 and [UI3(thf)4] or [UI3(py)4]. The stability of the [M(C5H4Bu t)I2] species was found to vary in the order Nd > Ce > U > La, a trend which is in accord with an electrostatic bonding model. However, the bis and tris(cyclopentadienyl) complexes of uranium are more stable than their lanthanide analogues. This difference can be accounted for by a higher degree of covalency in the U-C5H4Bu t bond, resulting from the late appearance of back-bonding which would emerge only after the first cyclopentadienyl ligand is bound.  相似文献   

15.
Several compounds based on the C(1)-symmetric ligands [N(R)C(Ar)NPh]- [abbreviated as B1 (Ar = C(6)H(4)Me-4) or B2 (Ar = Ph), R = SiMe(3)] are reported. They are the crystalline metal benzamidinates [Li(mu:kappa2-B1)(OEt2)](2) (1), [Al(kappa2-B1)2Me] (2), [Al(kappa2-B1)2X] [X = Cl/Me, 1 : 1 (3)], [Sn(kappa2-B1)2] (4), Zr(kappa2-B1)2Cl2 (5), [Zr(kappa2-B1)3Cl] (6), [Na(mu:kappa2-B1)(tmeda)]2 (7), K[B1] (8), Li(B2)(OEt2) (9) and Zr(kappa2-B1)3Cl (10) and the known benzamidine Z-H2NC(C6H4Me-4) = NPh (11). They were prepared by (i) insertion of the nitrile 4-MeC6H4CN (1, 7, 8, 11) or PhCN (9) into the appropriate M-N(R')Ph [R' = R and M = Li (1, 9), Na (7), K (8)] bond and subsequent hydrolysis for 11 [R' = H and M = Li], or (ii) a ligand transfer reaction using the lithium amidinate 1 and Al(Me)2Cl (2, 3), SnCl2 (4) or ZrCl4 (5, 6), or Li(B2) and ZrCl4 (10). The X-ray structures of 1, 2, 3, 4, 6b (i.e..3PhMe) 7, and 11 are presented. Exploratory polymerisation experiments are described, using 2, 5 or 6 as a procatalyst with methylaluminoxane (MAO) (Al : Zr ca. 500 : 1) as promoter. Thus toluene solutions were exposed to C2H4 under ambient conditions; while 2 was unresponsive, 5 and 6 showed modest activity in the formation of polyethylene.  相似文献   

16.
Group 4 metal complexes [M(eta(5)-C(5)Me(4)SiMe(2)-eta(1)-N-2R)(NMe(2))(2)] (R = pyridine, pyrazine, pyrimidine, thiazole, M = Ti; R = pyridine, thiazole; M = Zr) containing the tetramethylcyclopentadienyl-dialkylsilyl bridged amidinato as pendant ligand, were synthesized and characterized by elemental analysis, solution (1)H, (13)C and (15)N NMR spectroscopy and experimental (13)C and (15)N CPMAS in the solid state. The crystal structures of [Ti(eta(5)-C(5)Me(4)SiMe(2)-eta(1)-N-2R)(NMe(2))(2)] (R = pyridine, pyrazine, pyrimidine, thiazole) were determined by single crystal X-ray diffraction studies. All compounds exhibit a distorted tetrahedral geometry, with the ansa-monocyclopentadienyl-amido ligands acting in a bidentate mode. The [M(eta(5)-C(5)Me(4)SiMe(2)-eta(1)-N-2R)(NMe(2))(2)] (R = pyridine, thiazole; M = Zr, Ti) complexes are ethylene polymerization catalysts in the presence of MAO and they are active precursors in regioselective catalytic hydroamination operating with an anti-Markovnikov mechanism.  相似文献   

17.
The thermally stable silylene Si[(NCH(2)Bu(t))(2)C(6)H(4)-1,2] 1 undergoes oxidative addition reactions with the alkali metal silylamides MN(SiMe(3))(2)(M = Li, Na or K) to afford the new alkali metal amides MN(SiMe(3))[(1)SiMe(3)][M = Li (2), Na (3) or K (4)]. Reaction of two equivalents of 1 with LiN(R)(SiMe(3)) leads in a two-step process to the compound LiN[(1)R][(1)SiMe(3)][R = SiMe(2)Ph (5) or SiMe(3) (6)]. Alternatively, 1 reacts with 3 to afford NaN[(1)SiMe(3)](2) (7). The structures of 2-5 and are presented and the formation of 2-7 is discussed.  相似文献   

18.
[Ce(NR(2))(3)] (R = SiMe(3)) with TeCl(4) in tetrahydrofuran solution gave a mixture of two major products in a combined yield of ca. 50% based on available metal: (i) the Ce(IV) amide [CeCl(NR(2))(3)] (1), which was isolated as purple needles and identified on the basis of (1)H NMR and mass spectra, microanalysis, and a single-crystal X-ray analysis [C(18)H(54)CeClN(3)Si(6), rhombohedral, R3c (No. 161), a = b = 18.4508(7) A, c = 16.8934(7) A, Z = 6]; (ii) unstable [[Ce(NR(2))(2)(mu-Cl)(thf)](2)] (2), as colorless blocks [C(32)H(88)Ce(2)Cl(2)N(4)O(2)Si(8), monoclinic, P2(1)/n (No. 14), a = 14.506(3) A, b = 13.065(3) A, c = 16.779(3) A, beta = 113.789(12) degrees, Z = 2], which readily disproportionated in solution. In toluene solution, the product 1 was obtained exclusively. The same cerium(III) amide starting material was oxidized by PBr(2)Ph(3) in diethyl ether solution to give purple [CeBr(NR(2))(3)] (3) [C(18)H(54)BrCeN(3)Si(6), rhombohedral, R3c (No. 161), a = b = 18.4113(12) A, c = 16.9631(17) A, Z = 6], along with presumed [CeBr(3)(OEt(2))(n)()], which has not been characterized but with thf, by displacement of the ether ligands, gave [CeBr(3)(thf)(4)] (4) [C(16)H(32)Br(3)CeO(4), triclinic, P1 (No. 2), a = 8.2536(7) A, b = 9.4157(5) A, c = 15.5935(14) A, alpha = 79.009(5), beta = 87.290(3) degrees, gamma = 74.835(5) degrees, Z = 2). TeBr(4) reacted with [Ce(NR(2))(3)] in thf to give small amounts of 3; the major product (although only formed in 15% yield) was monomeric [CeBr(2)(NR(2))(thf)(3)] (5) [C(18)H(42)Br(2)CeNO(3)Si(2), monoclinic, P2(1)/c (No. 14), a = 14.9421(4) A, b = 11.8134(5) A, c = 15.8317(7) A, alpha = gamma = 120 degrees, beta = 92.185(3) degrees, Z = 4].  相似文献   

19.
The coordination chemistry of the N-substituted arylamido ligands [N(R)(C6H3R'2-2,6)] [R = SiMe3, R' = Me (L1); R = CH2But, R' = Pri (L2)] toward FeII and CoII ions was studied. The monoamido complexes [M(L1)(Cl)(tmeda)] [M = Fe (1), Co (2)] react readily with MeLi, affording the mononuclear, paramagnetic iron(II) and cobalt(II) methyl-arylamido complexes [M(L1)(Me)(tmeda)] [M = Fe (3), Co (4)]. Treatment of 2:1 [Li(L2)(THF)2]/FeCl2 affords the unusual two-coordinate iron(II) bis(arylamide) [Fe(L2)2] (5).  相似文献   

20.
A family of rare earth metal bis(amide) complexes bearing monoanionic amidinate [RC(N-2,6-Me(2)C(6)H(3))(2)](-) (R = cyclohexyl (Cy), phenyl (Ph)) as ancillary ligands were synthesized and characterized. One-pot salt metathesis reaction of anhydrous LnCl(3) with one equivalent of amidinate lithium [RC(N-2,6-Me(2)C(6)H(3))(2)]Li, following the introduction of two equivalents of NaN(SiMe(3))(2) in THF at room temperature afforded the neutral and unsolvated mono(amidinate) rare earth metal bis(amide) complexes [RC(N-2,6-Me(2)C(6)H(3))(2)]Y[N(SiMe(3))(2)](2) (R = Cy (1); R = Ph (2)), and the "ate" mono(amidinate) rare earth metal bis(amide) complex [CyC(N-2,6-Me(2)C(6)H(3))(2)]Lu[N(SiMe(3))(2)](2)(μ-Cl)Li(THF)(3) (3) in 61-72% isolated yields. These complexes were characterized by elemental analysis, NMR spectroscopy, FT-IR spectroscopy, and X-ray single crystal diffraction. Single crystal structural determination revealed that the central metal in complexes 1 and 2 adopts a distorted tetrahedral geometry, and in complex 3 forms a distorted trigonal bipyramidal geometry. In the presence of AlMe(3), and in combination with one equimolar amount of [Ph(3)C][B(C(6)F(5))(4)], complexes 1 and 2 showed high activity towards isoprene polymerization to give high molecular weight polyisoprene (M(n) > 10(4)) with good cis-1,4 selectivity (>90%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号