首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
With the aim of modeling reactive moieties and relevant intermediates on the surfaces of vanadium oxide based catalysts during oxygenation/dehydrogenation of organic substrates, mono- and dinuclear vanadium oxo complexes of doubly deprotonated p-tert-butylated tetrathiacalix[4]arene (H4TC) have been synthesized and characterized: PPh4[(H2TC)VOCl(2)] (1) and (PPh4)2[{(H2TC)V(O)(mu-O)}2] (2). According to the NMR spectra of the dissolved complexes they both retain the structures adopted in the crystalline state, as revealed by single-crystal X-ray crystallography. Compounds 1 and 2 were tested as catalysts for the oxidation of alcohols with O(2) at 80 degrees C. Both 1 and 2 efficiently catalyze the oxidation of benzyl alcohol, crotyl alcohol, 1-phenyl-1-propanol, and fluorenol, and in most cases dinuclear complex 2 is more active than mononuclear complex 1. Moreover, the two thiacalixarene complexes 1 and 2 are in many instances more active than oxovanadium(V) complexes containing "classical" calixarene ligands tested previously. Complexes 1 and 2 also show significant activity in the oxidation of dihydroanthracene. Further investigations led to the conclusion that 1 acts as precatalyst that is converted to the active species PPh4[(TC)V==O] (3) at 80 degrees C by double intramolecular HCl elimination. For complex 2, the results of mechanistic investigations indicated that the oxidation chemistry takes place at the bridging oxo ligands and that the two vanadium centers cooperate during the process. The intermediate (PPh4)2[{H2TCV(O)}2(mu-OH)(mu-OC13H9)] (4) was isolated and characterized, also with respect to its reactivity, and the results afforded a mechanistic proposal for a reasonable catalytic cycle. The implications which these findings gathered in solution may have for oxidation mechanisms on the surfaces of V-based heterogeneous catalysts are discussed.  相似文献   

3.
研究了钒负载不同氧化硅载体(Silica-gel,SBA-15,MCM-41,fumed-SiO2,Nano-SiO2)的丙烷氧化脱氢(ODH)催化剂的结构特征和催化性能,结合催化剂的程序升温表面反应(TPSR)的差热热重质谱(TG-DSC-MS)和原位紫外漫反射光谱(UV-vis DRS)等技术,研究钒在载体上的分散度和晶格氧的反应性。结果表明:负载型钒氧化物催化剂的活性取决于钒在不同硅基载体上的分散度,高度分散的隔离的四配位V5+是丙烷氧化脱氢的活性位。C3H6选择性主要与催化剂的平均孔径相关联,平均孔径越小,产物C3H6越易发生深度氧化。另外,不同氧化硅载体晶格氧与钒的结合强度对C3H6的选择性也产生影响,结合力较弱的V-O-Si中的晶格氧是丙烷氧化脱氢的燃烧位,且燃烧温度随晶格氧与钒、硅结合强度的减小而降低。而与钒结合力较强的V=O和V-O-V中的晶格氧是丙烷氧化脱氢的选择氧化位。硅基载体形貌和结构的不同导致负载型钒氧化物催化剂丙烷氧化脱氢活性和选择性发生差异。  相似文献   

4.
陈静  张庆红  方文浩  王野  万惠霖 《催化学报》2010,26(8):1061-1070
 研究了多种载体负载 Pd 催化剂上苯甲醇无氧脱氢反应. 结果发现, 以兼具较强酸性和碱性的水滑石 (HT) 为载体时, Pd 催化剂具有优异的苯甲醇转化活性和苯甲醛选择性, 当 Pd 含量为 0.32%~0.55% 时催化性能最佳. Pd/HT 催化剂可重复使用, 且对于含推电子取代基的芳香醇、2-噻吩甲醇、α,β-不饱和醇与环状脂肪醇等的直接脱氢反应均具有较好催化性能. HT 表面的 Pd(II) 物种反应后转变为平均粒径为 2.0~2.5 nm 的 Pd 纳米粒子或纳米簇. 具有较高分散度的 Pd(II) 物种易转变为较小的 Pd 纳米粒子, 从而具有较佳的催化性能. 本文推测, 催化剂表面的碱性位可促进苯甲醇 O–H 键的活化, 形成 Pd-苯甲氧基中间体, 该中间体进一步脱氢生成苯甲醛和 Pd-H 物种; 而催化剂表面的质子酸位可与 Pd-H 作用, 促进 H2 的脱除.  相似文献   

5.
A quantitative method based on UV-vis diffuse reflectance spectroscopy (DRS) was developed that allows determination of the fraction of monomeric and polymeric VO(x) species that are present in vanadate materials. This new quantitative method allows determination of the distribution of monomeric and polymeric surface VO(x) species present in dehydrated supported V(2)O(5)/SiO(2), V(2)O(5)/Al(2)O(3), and V(2)O(5)/ZrO(2) catalysts below monolayer surface coverage when V(2)O(5) nanoparticles are not present. Isolated surface VO(x) species are exclusively present at low surface vanadia coverage on all the dehydrated oxide supports. However, polymeric surface VO(x) species are also present on the dehydrated Al(2)O(3) and ZrO(2) supports at intermediate surface coverage and the polymeric chains are the dominant surface vanadia species at monolayer surface coverage. The propane oxidative dehydrogenation (ODH) turnover frequency (TOF) values are essentially indistinguishable for the isolated and polymeric surface VO(x) species on the same oxide support, and are also not affected by the Br?nsted acidity or reducibility of the surface VO(x) species. The propane ODH TOF, however, varies by more than an order of magnitude with the specific oxide support (ZrO(2) > Al(2)O(3) > SiO(2)) for both the isolated and polymeric surface VO(x) species. These new findings reveal that the support cation is a potent ligand that directly influences the reactivity of the bridging V-O-support bond, the catalytic active site, by controlling its basic character with the support electronegativity. These new fundamental insights about polymerization extent of surface vanadia species on SiO(2), Al(2)O(3), and ZrO(2) are also applicable to other supported vanadia catalysts (e.g., CeO(2), TiO(2), Nb(2)O(5)) as well as other supported metal oxide (e.g., CrO(3), MoO(3), WO(3)) catalyst systems.  相似文献   

6.
A method is developed for incorporating praseodymium into magnesium–aluminum hydrotalcites, which are precursors for oxide catalysts for oxidative dehydrogenation (ODH) of alkanes. Oxide catalyst samples that contain praseodymium and various combinations of magnesium, aluminum, chromium, vanadium, molybdenum, and niobium are prepared. The catalytic properties of the prepared catalysts in ethane, propane, and butane ODH reactions are studied. Into some of our studied multicomponent catalysts, the incorporation of praseodymium enhances the reaction selectivity and increases yields of desired products.  相似文献   

7.
This paper describes further studies on mono- and bi-metallic catalysts attached to a polymer support by β-di- and tri-ketone surface ligands. The previous two papers described the oxidation of catechol by the heterogeneous catalysts using Cu(II), Fe(III) and Pd(II) as the metal species. The present study expands these studies to a series of mono- and polyfunctional alcohols using Pd(II) as the metal species. The final catalytic surfaces were prepared by treatment of the modified polymer with a very reactive form of Pd(II), [Pd(CH3CN)4]2+. The simple alcohols gave increases in rates of up to 5-fold for the bimetallic systems. As might be expected glycols and - -glucose gave even higher increases in rate in going from the mono- to the bi-metallic catalyst. For ethylene glycol the factor was 30. Unsaturated alcohols gave the most dramatic results. With the monometallic catalyst, the products from allyl alcohol consisted of 25% acrolein resulting from direct alcohol oxidation and 75% 3-hydroxypropanal resulting from Wacker-type oxidation of the double bond. With the bimetallic catalyst the overall rate increased by a factor of 10 and the products consisted of 80% acrolein and 20% 3-hydroxypropanal. The actual rate increase for the direct alcohol oxidation is calculated to be a factor of 32. 4-Penten-2-ol and 4-penten-1-ol gave rates that were lower than the monofunctional alcohols. This is attributed to inhibition by olefin π-complex formation with the Pd(II).  相似文献   

8.
The vanadium phosphorous oxide (VPO) catalysts, supported on mesoporous hexagonal molecular sieves (HMS) with different vanadium loadings, were prepared by precipitation method on organic phase. Techniques such as XRD, BET and SEM, were used for characterization of the catalyst. The bulk VPO catalyst contains vanadyl pyrophosphate phase ((VO)2P2O7), and a small amount of VOPO4. The high surface area, large pore volume and pore size of HMS in VPO/HMS samples, provide an excellent dispersion of same phase of VPO compound on the support surface. Oxidation of various alcohols was studied in the liquid phase over VPO/HMS catalyst, using tert‐butylhydroperoxide (TBHP) as an oxidant. The activity of VPO/HMS samples were considerably increased with respect to bulk VPO catalyst. At 90 °C, the obtained activities were 0.567 and 6.545 gpro.g?1VPOh?1 over the bulk VPO and 20 wt% VPO/HMS catalysts, respectively. The effects of substrates, reaction time, reaction temperature, solvents, catalyst recycling and leaching of VPO in liquid phase reaction were also investigated. The following order has been observed for the percentage of conversions of alcohols: Benzylic alcohol > Secondary alcohol ~ Primary alcohol. The kinetic of benzyl alcohol oxidation using excess TBHP over VPO/HMS catalyst was investigated at temperatures of 27, 60 and 90 °C, and followed a pseudo‐first order with respect to benzyl alcohol.  相似文献   

9.
Oxide catalyst samples for the oxidative dehydrogenation (ODH) of alkanes were prepared by heat treatment of precursors, namely, hydrotalcite-related magnesium aluminum double hydroxo salts containing ytterbium, as well as magnesium, aluminum, chromium, vanadium, molybdenum, and niobium in various combinations. Their catalytic activities were studied. Some catalysts were found to have high efficiency in ODH of ethane, propane, and isobutane, increasing the product yield and enhancing the reaction selectivity.  相似文献   

10.
Here we report the catalytic oxidation of benzylic alcohol, hetero‐aryl alcohols and propargylic alcohols to their corresponding carbonyl compound using heterobimetallic sodium‐dioxidovanadium(V) complexes. The present catalytic oxidation studies proceed at 70 °C using H2O2 as terminal oxidant. During the whole process, the complexes react with hydrogen peroxide to form peroxo‐vanadium(V) species. The present study shows the heterogeneity of pre‐catalyst which could be easily recovered and moreover isolation of product is very simple.  相似文献   

11.
Ce0.46Zr0.54O2 solid solution prepared using a cellulose template was employed as a carrier for vanadium catalysts of the oxidative dehydrogenation of propane. The properties of VO х /Ce0.46Zr0.54O2 catalyst (5 wt % vanadium) are compared with the properties of the neat support. The carrier and catalyst are studied by means of BET, SEM, DTA, XRD, and Raman spectroscopy. It is shown that the CeVO4 phase responsible for the ODH process is formed upon interaction between vanadate ions and cerium ions on the surface of the solid solution. The catalytic properties of the catalyst and the support are studied in the propane oxidation reaction at temperatures of 450 and 500°C with pulse feeding of the reagent. It is found that the complete oxidation of propane occurs on the support with formation of CO2 and H2O. Three products (propene, CO2, and H2O) form in the presence of the vanadium catalyst. It is suggested that there are two types of catalytic centers on the catalyst’s surface. It is concluded that the centers responsible for the complete oxidation of propane are concentrated mainly on the carrier, while the centers responsible for propane ODH are on the CeVO4.  相似文献   

12.
The partial oxidation of 4-tert-butyltoluene to 4-tert-butylbenzaldehyde by hydrogen peroxide in glacial acetic acid, catalyzed by bromide ions in combination with cobalt(II) acetate or cerium(III) acetate, has been studied in detail. Based on the observed differences in reaction rates and product distributions for the different catalysts, a reaction mechanism involving two independent pathways is proposed. After the initial formation of a benzylic radical species, either oxidation of this intermediate by the metal catalyst or reaction with bromine generated in situ occurs, depending on which catalyst is used. The first pathway leads to the exclusive formation of 4-tert-butylbenzaldehyde, whereas reaction of the radical intermediate with bromine leads to formation of the observed side products 4-tert-butylbenzyl bromide and its hydrolysis and solvolysis products 4-tert-butylbenzyl alcohol and 4-tert-butylbenzyl acetate, respectively. The cobalt(II) catalysts Co(OAc)(2) and Co(acac)(2) are able to quickly oxidize the radical intermediate, thereby largely preventing the bromination reaction (i.e., side-product formation) from occurring, and yield the aldehyde product with 75-80 % selectivity. In contrast, the cerium catalyst studied here exhibits an aldehyde selectivity of around 50 % due to the competing bromination reaction. Addition of extra hydrogen peroxide leads to an increased product yield of 72 % (cerium(III) acetate) or 58 % (cobalt(II) acetate). Product inhibition and the presence of increasing amounts of water in the reaction mixture do not play a role in the observed low incremental yields.  相似文献   

13.
3-allyl-N-(alkoxycarbonyl)indoles are synthesized via the reaction of 2-(alkynyl)phenylisocyanates and allyl carbonates in the presence of Pd(PPh(3))(4) (1 mol %) and CuCl (4 mol %) bimetallic catalyst. It is most probable that Pd(0) acts as a catalyst for the formation of a pi-allylpalladium alkoxide intermediate and Cu(I) behaves as a Lewis acid to activate the isocyanate, and the cyclization step proceeds with a cooperative catalytic activity of Pd and Cu. On the other hand, N-(alkoxycarbonyl)indoles are produced via the reaction of 2-(alkynyl)phenylisocyanates and alcohols under a catalytic amount of Na(2)PdCl(4) (5 mol %) or PtCl(2) (5 mol %). Pd(II) or Pt(II) catalyst exhibits dual roles; it acts as a Lewis acid to accelerate the addition of alcohols to isocyanates and as a typical transition-metal catalyst to activate the alkyne for the subsequent cyclization.  相似文献   

14.
Zeolite-encapsulated vanadium (IV) picolinate complexes were prepared by treatment of dehydrated VO(2+)–NaY zeolite with molten picolinic acids. Treatment of the NaY-encapsulated VO(pic)2 complex with urea hydrogen peroxide adduct in acetonitrile allowed to generate peroxovanadium species. The structure of vanadium peroxo species was studied by UV–vis, Raman and XAFS spectroscopies which suggested the formation of monoperoxo monopicolinate complex which could be active intermediate for various oxidation reactions with the catalysts. To elucidate effect of the encapsulation on catalytic performance, the catalytic properties of the encapsulated complexes were compared with that of corresponding homogeneous catalyst H[VO(O2)(pic)2]·H2O. The novel `ship-in-a-bottle' catalysts retain solution-like activities in aliphatic and aromatic hydrocarbon oxidations as well as in alcohol oxidation. In addition, the encapsulated vanadium picolinate catalysts showed a number of distinct features such as preferable oxidation of smaller substrates in competitive oxidations, increased selectivity of the oxidation of terminal CH3 group in isomeric octanes and preferable (sometimes exclusive) formation of alkyl hydroperoxides in alkane oxidations. The distinct features were explained in terms of intrazeolitic location of the active complexes that imposed transport discrimination and substrate orientation. On the basis of the experimental data, a possible mechanism was discussed. Stability of the vanadium complexes during the liquid phase oxidations and leaching from the NaY zeolite matrix were also examined.  相似文献   

15.
A series of 12-molybdophosphoric acid (MPA) supported on V2O5 dispersed γ-Al2O3 catalysts with different vanadia loadings were prepared by impregnation and characterized by N2 adsorption-desorption,X-ray diffraction,temperature-programmed reduction,in situ laser Raman spectroscopy,UV-Vis diffused reflectance spectroscopy,scanning electron microscopy,and temperature-programmed desorption of NH3 techniques.Their catalytic activities were evaluated for the vapor phase aerobic oxidation of benzyl alcohol.The catalysts exhibited high catalytic activity and the conversion of benzyl alcohol depended on the vanadia content while the catalyst with 15 wt% V2O5 content showed optimum activity.The characterization results suggest the presence of well-dispersed V2O5 and partially disintegrated Keggin ions of MPA on the support.In situ Raman studies showed a reduced Mo(IV) species when the catalysts were calcined at high temperatures.The high oxidation activity of the catalysts is related to the synergistic effect between MPA and V2O5.  相似文献   

16.
Polymer‐supported catalysts offer practical advantages for organic synthesis, such as improved product isolation, ease of catalyst recycling, and compatibility with parallel solution‐phase techniques. We have developed the (carboxypolystyrene‐catecholato)rhenium catalyst 2 derived from tyramine (=4‐(2‐aminoethyl)phenol), which is effective for alcohol oxidation with dimethylsulfoxide (DMSO) and for epoxide deoxygenation with triphenylphosphine. The supported [Re(catecholato)]catalyst 2 is air‐ and moisture‐stable and can be recovered and used repeatedly without decreasing activity. The procedures work with non‐halogenated solvents (toluene). DMSO for Re‐catalyzed alcohol oxidation is inexpensive and safer for transport and storage than commonly used peroxide reagents. The oxidation procedure was best suited for aliphatic alcohols, and the mild conditions were compatible with unprotected functional groups, such as those of alkenes, phenols, nitro compounds, and ketones (see Tables 1 and 2). Selective oxidation of secondary alcohols in the presence of primary alcohols was possible, and with longer reaction time, primary alcohols were converted to aldehydes without overoxidation. Epoxides (oxirans) were catalytically deoxygenated to alkenes with this catalyst and Ph3P (see Table 3). Alkyloxiranes were converted to the alkenes with retention of configuration, while partial isomerization was observed in the deoxygenation of cis‐stilbene oxide ( cis‐1,2‐diphenyloxirane). These studies indicate that supported [Re(catecholato)] complexes are effective catalysts for O‐atom‐transfer reactions, and are well suited for applications in organic synthesis.  相似文献   

17.
18.
介孔氧化铝负载钒催化剂上丙烷氧化脱氢制丙烯   总被引:6,自引:0,他引:6  
汪玉  谢颂海  岳斌  冯素姣  贺鹤勇 《催化学报》2010,26(8):1054-1060
 采用浸渍法制备了介孔氧化铝 (m-Al2O3) 负载钒催化剂 (V/m-Al2O3), 并考察了其催化丙烷氧化脱氢制丙烯反应活性. 通过 N2 吸附-脱附、透射电镜、X 射线粉末衍射、紫外-可见漫反射光谱、氢-程序升温还原和氨-程序升温脱附对催化剂进行了表征. 结果表明, 介孔氧化铝具有大比表面积、窄孔径分布和两维六方相结构, 在其上负载适量的 V 可实现 V 活性物种的高分散及催化剂的弱酸性, 从而有利于提高丙烷转化率和丙烯选择性. 与共合成法制备的含 V 介孔氧化铝 V/m-Al2O3(C) 和浸渍法制备的 V/?-Al2O3 相比, V/m-Al2O3 表现出更高的催化活性. 这与载体较弱的酸性和较大的比表面积以及 V 物种的高分散有关.  相似文献   

19.
异丁烷脱氢催化剂V-O-Al水热-流体干燥法合成   总被引:2,自引:0,他引:2  
负载型 V2 O5催化剂被广泛应用于烃的氧化、低碳烃的氧化脱氢及 NOx的 NH3 还原等催化反应[1~ 3 ] .对于低碳烃脱氢 ,Cr2 O3 和 Pt体系研究较多 ,而 V2 O5体系则鲜有报道[4 ,5] .水热合成方法是合成各种分子筛的常用方法 ,同时也被广泛用于合成多种无机功能材料 (如纳米材料 ,  相似文献   

20.
Catalysis by gold and gold-palladium nanoparticles has attracted significant research attention in recent years. These nanocrystalline materials have been found to be highly effective for selective and total oxidation, but in most cases the catalysts are prepared using precipitation or impregnation. We report the preparation of Au-Pd nanocrystalline catalysts supported on carbon prepared via a sol-immobilisation technique and these have been compared with Au-Pd catalysts prepared via impregnation. The catalysts have been evaluated for two selective chemical syntheses, namely, oxidation of benzyl alcohol and the direct synthesis of hydrogen peroxide. The catalysts have been structurally characterised using a combination of scanning transmission electron microscopy and X-ray photoelectron spectroscopy. The catalysts prepared using the sol immobilisation technique show higher activity when compared with catalysts prepared by impregnation as they are more active for both hydrogen peroxide synthesis and hydrogenation, and also for benzyl alcohol oxidation. The method facilitates the use of much lower metal concentrations which is a key feature in catalyst design, particularly for the synthesis of hydrogen peroxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号