首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rapid melting and resolidification of gold films irradiated by laser pulses less than 100 fs are investigated using the dual-hyperbolic two-step model. The solid–liquid interfacial velocity in the ultrafast phase change process is obtained by coupling a hyperbolic interfacial energy balance equation and nucleation dynamics. The results are compared with the experimental data for the 28-fs laser. The effects of laser pulse widths and fluences on melting process are investigated. A phase chart of the variations of pulse widths and fluences is established. The relationship between the melting threshold and ablation threshold is also presented.  相似文献   

2.
研究了800nm飞秒激光照射下45°高反膜ZrO2-Si O2的破坏及其超快动力学过程。利用原子力显微镜和扫描电镜观察了材料的烧蚀形貌,测量了破坏阈值与脉冲宽度、烧蚀深度与脉冲能量的依赖关系。随着脉冲宽度从50fs增加到900fs,其烧蚀阈值从0.35J/cm2增加到1.78J/cm2。烧蚀深度与激光能流密度近似成对数关系。当激光强度略高于烧蚀阈值时,材料很快被烧蚀到几百纳米,烧蚀深度表现出明显的层状特性。同时,利用建立的抽运探针实验系统,测量了高强度抽运脉冲作用下材料对探针光的反射率随延迟时间的变化,揭示了薄膜烧蚀的超快动力学过程。实验结果表明高反膜表层的材料对烧蚀特性有重要影响。  相似文献   

3.
杨哲  张祥  肖思  何军  顾兵 《物理学报》2015,64(17):177901-177901
采用Z扫描和抽运-探测实验技术, 在波长为532 nm、脉冲宽度为41 fs的条件下测得ZnSe晶体的双光子吸收系数, 并获得了不同激发光强下的自由载流子吸收截面、电子-空穴带间复合时间和电子-声子耦合时间. 研究发现, 随着激发光强的增大, 自由载流子吸收截面减小, 复合时间变短. 当激发光强增大导致载流子浓度大于1018 cm-3时, 抽运-探测信号出现明显改变, 原因归结为强光场激发导致样品在短时间内带隙变窄和电子-空穴等离子体的形成.  相似文献   

4.
This study investigated the effects of ZnSe nanoparticles (NPs) on the structural and (linear and nonlinear) optical properties of polyvinyl alcohol (PVA) thin film. Three samples of ZnSe NP-doped PVA thin films with different concentrations of ZnSe were produced on a glass substrate. The ZnSe NPs were synthesized by pulsed laser ablation of the ZnSe bulk target immersed in distilled water using a 1064 nm wavelength and a high frequency pulsed Nd:YAG laser. The optical bandgap energies of the films were extracted from their UV-Vis-NIR absorption spectra. The corresponding energy bandgaps of the nanocomposite films declined as the ZnSe NPs doping concentration increased. X-ray diffraction analysis was used to characterize the crystalline phases of the ZnSe/PVA nanocomposite films. The concentration-dependent nonlinear optical absorption and nonlinear refraction behaviors of the films after exposure to 532-nm nanosecond laser pulses were investigated using the Z-scan technique. The nonlinear absorption response of the films was positive when measured using an open aperture scheme, which was attributed to the two-photon absorption mechanism. In addition, the nonlinear refraction indices had a negative value and they increased as the concentration of ZnSe NPs in the films increased.  相似文献   

5.
The space-time dynamics of thermal melting, subsurface cavitation, spallative ablation, and fragmentation ablation of the silicon surface excited by single IR femtosecond laser pulses is studied by timeresolved optical reflection microscopy. This dynamics is revealed by monitoring picosecond and (sub)nanosecond oscillations of probe pulse reflection, which is modulated by picosecond acoustic reverberations in the dynamically growing surface melt subjected to ablation and having another acoustic impedance, and by optical interference between the probe pulse replicas reflected by the spalled layer surface and the layer retained on the target surface. The acoustic reverberation periods change during the growth and ablation of the surface melt film, which makes it possible to quantitatively estimate the contributions of these processes to the thermal dynamics of the material surface. The results on the thermal dynamics of laser excitation are supported by dynamic measurements of the ablation parameters using noncontact ultrasonic diagnostics, scanning electron microscopy, atomic force microscopy, and optical interference microscopy of the modified regions appearing on the silicon surface after ablation.  相似文献   

6.
The structural transformation dynamics of single-crystalline indium phosphide (InP) irradiated with 150 fs laser pulses at 800 nm has been investigated by means of time-resolved reflectivity measurements covering a time window from 150 fs up to 500 ns. The results obtained show that for fluences above a threshold of 0.16 J/cm2 thermal melting of the material occurs on the timescale of 1–2 ps. The evolution of the reflectivity on a longer timescale reveals the reflectivity of the liquid phase and shows resolidification times typically around 10–30 ns after which an amorphous layer several tens of nanometers thick is formed on the surface. This amorphous layer significantly alters the optical properties of the surface and finally leads to a reduced ablation threshold for subsequent laser pulses. Single-pulse ablation at higher fluences (>0.23 J/cm2) is preceded by an ultrafast phase transition (non-thermal melting) occurring within 400 fs after the arrival of the pulse to the surface. PACS 79.20.Ds; 78.47.+p; 64.70.-p  相似文献   

7.
A high-fidelity numerical model for investigations of the ultrafast heating is highly desirable for simulating the pulsed laser damage and the ultrafast electron emission characteristics. However, realization of accurate predictions of thermal dynamics and thermionic electron emission remains challenging due to the high non-equilibrium state, in which the equilibrium heating parameters are invalid. Here, we report an axisymmetric two-dimensional (2-D) high-fidelity numerical model for predictions of the thermionic emission with respect to the temperature-dependent dynamics parameters. The spatio-temporal temperature evolution dynamics and the thermionic emission rate characteristics on Au film target are demonstrated, whose credibility is approved by the Au film ablation threshold experiments.  相似文献   

8.
Melting, vaporization and resolidification processes of thin gold film irradiated by a femtosecond pulse laser are studied numerically. The nonequilibrium heat transfer in electrons and lattice is described using a two-temperature model. The solid–liquid interfacial velocity, as well as elevated melting temperature and depressed solidification temperature, is obtained by considering the interfacial energy balance and nucleation dynamics. An iterative procedure based on energy balance and gas kinetics law to track the location of liquid–vapor interface is utilized to obtain the material removal by vaporization. The effect of surface heat loss by thermal radiation was discussed. The influences of laser fluence and duration on the evaporation process are studied. Results show that higher laser fluence and shorter laser pulse width lead to higher interfacial temperature, deeper melting and ablation depths.  相似文献   

9.
In this work, we study the application of ultrafast pulsed laser deposition (PLD) in ZnO nanomaterial synthesis, including nanoparticles and nanorods. PLD using long pulse (nanosecond) lasers has been widely used as a method for growing prototype materials. The recently-emerged ultrafast PLD is expected to be able to overcome the problem of large liquid droplet formation. Using near infrared and femtosecond laser pulses in ablation, we first characterize the ablation plume using a Langmuir probe and plasma optical emission spectroscopy. We then examine the structural properties of the nanoparticles generated during low-fluence ablation. Finally, we demonstrate that using nanoparticle aggregates as templates, assisted by plume-excited nitrogen radicals at a high fluence, high quality ZnO nanorods can be grown free of metal catalysts.  相似文献   

10.
Single-shot ablation threshold for thin chromium film was studied using 266 nm, femtosecond laser pulses. Chromium is a useful material in the nanotechnology industry and information on ablation threshold using UV femtosecond pulses would help in precise micromachining of the material. The ablation threshold was determined by measuring the ablation crater diameters as a function of incident laser pulse energy. Absorption of 266 nm light on the chromium film was also measured under our experimental conditions, and the absorbed energy single-shot ablation threshold fluence was \(46 \pm 5\)  mJ/cm2. The experimental ablation threshold fluence value was compared to time-dependent heat flow calculations based on the two temperature model for ultrafast laser pulses. The model predicts a value of 31.6 mJ/cm2 which is qualitatively consistent with the experimentally obtained value, given the simplicity of the model.  相似文献   

11.
Experimental and theoretical investigations of aluminum (Al) and gold (Au) surface modification by soft X-ray laser pulse are presented. Well-polished samples of Al and Au are irradiated by ps-duration pulse with wavelength of 13.9 nm at the energy range of 24–72 nJ. Differences in the melting and the ablation processes for those materials are observed. It is shown that at low laser pulse energy, the nanoscale ripples on the surface may be induced by melting without following ablation. In that case, the nanoscale changes in the surface are caused by splash of molten metal under gradient of fluence. At higher laser pulse energy, the ablation process occurs and craters are formed on the surface. However, the melting determines the size of the modified surface at all ranges of the laser energies. For interpretation of experimental results, the atomistic simulations of melting and ablation processes in Al and Au are provided. The calculated threshold fluencies for melting and ablation are well consistent with measured ones.  相似文献   

12.
13.
14.
We report an experimental analysis of the plasma plume produced during ultrafast laser ablation of a copper target, in high vacuum. The plasma plume optical emission is studied by using a hybrid time-gated imaging technique which allows obtaining simultaneous information on the spectral and spatial characteristics of the emitting species. We used both single and double pulse ablation scheme, observing their influence on the characteristics of the ablated atomic species.  相似文献   

15.
A theoretical study of different ultrafast nonequilibrium processes taking place during and after ultrashort excitation of clusters is presented. We discuss similarities and differences for several processes involving nonequilibrium ultrafast motion of atoms and electrons. We study ultrashort relaxation of clusters in response to excitations produced by femtosecond laser pulses of different intensities. We show how different relaxation processes, such as bond breaking, melting, fragmentation, emission of atoms, or Coulomb explosion, can be induced, depending on the laser intensity and laser pulse duration. We also discuss processes involving nonequilibrium electron dynamics, such as intraband Auger decay in clusters and ultrafast electronic motion during collisions between clusters and surfaces. We show that this electron dynamics leads to Stückelberg-like oscillations of measurable quantities, such as the electron emission yield. Received: 4 April 2000 / Accepted: 6 November 2000 / Published online: 9 February 2001  相似文献   

16.
We demonstrate that diode laser self-mixing interferometry can be exploited to instantaneously measure the ablation front displacement and the laser ablation rate during ultrafast microdrilling of metals. The proof of concept was obtained using a 50-μm-thick stainless steel plate as the target, a 120?ps/110?kHz microchip fiber laser as the machining source, and an 823?nm diode laser with an integrated photodiode as the probe. The time dependence of the hole penetration depth was measured with a 0.41?μm resolution.  相似文献   

17.
Experimental investigations using femtosecond and picosecond laser pulses at 800 nm illuminate the distinctions between the dynamics and nature of ultrafast processing of dielectrics compared with semiconductors and metals. Dielectric materials are strongly charged at the surface on the sub-ps time scale and undergo an impulsive Coulomb explosion prior to thermal ablation. Provided the laser pulse width remains in the ps or sub-ps time domain, this effect can be exploited for processing. In the case of thermal ablation alone, the high localization of energy accompanied by ultrafast laser micro-structuring is of great advantage also for high quality processing of thin metallic or semiconducting layers, in which the surface charge is effectively quenched. Received: 17 January 2003 / Accepted: 8 February 2003 / Published online: 28 May 2003 RID="*" ID="*"Corresponding author. Fax: +49-30/670-53-500, E-mail: d.ashkenasi@lmtb.dt RID="**" ID="**"Present address: LMTB GmbH, Berlin, Fabeckstr. 60–62, D-14195 Berlin, Germany  相似文献   

18.
The ablation process of thin copper films on fused silica by picosecond laser pulses is investigated. The ablation area is characterized using optical and scanning electron microscopy. The single-shot ablation threshold fluence for 40 ps laser pulses at 1053 nm has been determinated toF thres = 172 mJ/cm2. The ablation rate per pulse is measured as a function of intensity in the range of 5 × 109 to 2 × 1011 W/cm2 and changes from 80 to 250 nm with increasing intensity. The experimental ablation rate per pulse is compared to heat-flow calculations based on the two-temperature model for ultrafast laser heating. Possible applications of picosecond laser radiation for microstructuring of different materials are discussed.  相似文献   

19.
We demonstrate a fourfold increase of the output energy of the gain-switched mid-IR Fe:ZnSe laser. Iron doping of the ZnSe polycrystalline samples was realized using a postgrowth thermal-diffusion method from the metal film. Gain-switched Er:Cr:YSGG (2.8 μm) laser pumped Fe:ZnSe lasing was studied in a Fabry-Perot cavity over a 236-300 K temperature range. The maximum output energy reached 4.7 mJ at 4.3 μm and 3.6 mJ at 4.37 μm at 236 K and 300 K and was limited only by available pump energy. The laser threshold was about 8 mJ and was practically unchanged over the studied temperature range. The laser slope efficiencies, measured with respect to the input pump energy, decreased from 19% to 16% with an increase of temperature from 236 to 300 K. The output radiation featured a Gaussian spatial profile with M(2) = 2.6.  相似文献   

20.
Ultrashort pulse laser ablation of metallic targets is investigated theoretically through establishing a modified two-temperature model that takes into account both the temperature dependent electron–lattice coupling and the electron–electron-collision dominated electron diffusion processes for higher electron temperature regime. The electron–lattice energy coupling rate is found to reduce only slowly with increasing pulse duration, but grow rapidly with laser fluence, implying that the melting time of metallic materials decreases as the laser intensity increases. By taking phase explosion as the primary ablation mechanism, the predicted dependences of ablation rates on laser energy fluences for different laser pulse widths match very well with the experimental data. It is also found that during phase explosion the ablation rate is almost independent of the pulse width, whereas the ablation threshold fluence increases with the pulse duration even for femtosecond pulses. These theoretical results should be useful in having proper understanding of the ablation physics of ultrafast micromachining of metal targets. PACS 52.50.Jm; 61.80.Az; 72.15.Cz; 79.20.Ap; 79.20.Ds  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号