首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 2 毫秒
1.
2.
Multiple microRNAs (miRNAs) are detected in a microarray format using a novel approach that combines a surface enzyme reaction with nanoparticle-amplified SPR imaging (SPRI). The surface reaction of poly(A) polymerase creates poly(A) tails on miRNAs hybridized onto locked nucleic acid (LNA) microarrays. DNA-modified nanoparticles are then adsorbed onto the poly(A) tails and detected with SPRI. This ultrasensitive nanoparticle-amplified SPRI methodology can be used for miRNA profiling at attomole levels.  相似文献   

3.
We document the surprising result that single-stranded DNA adsorbs on negatively charged gold nanoparticles (Au-nps) with a rate that depends on sequence length and temperature. After ss-DNA adsorbs on Au-nps, we find that the particles are stabilized against salt-induced aggregation. These observations can be rationalized on the basis of electrostatics and form the basis for a colorimetric assay to identify specific sequences and single nucleotide polymorphisms on polymerase chain reaction (PCR)-amplified DNA. The assay is label-free, requires no covalent modification of the DNA or Au-np surfaces, and takes on the sensitivity of PCR. Most important, binding of target and probe takes place in solution where hybridization occurs in less than 1 min. As an example, we test PCR-amplified genomic DNA from clinical samples for single nucleotide polymorphisms (SNPs) associated with a fatal arrhythmia known as long QT syndrome.  相似文献   

4.
5.
This paper describes a new method to replicate DNA and RNA microarrays. The technique, which facilitates positioning of DNA and RNA with submicron edge resolution by microcontact printing (muCP), is based on the modification of poly(dimethylsiloxane) (PDMS) stamps with dendrimers ("dendri-stamps"). The modification of PDMS stamps with generation 5 poly(propylene imine) dendrimers (G5-PPI) gives a high density of positive charge on the stamp surface that can attract negatively charged oligonucleotides in a "layer-by-layer" arrangement. DNA as well as RNA is transfer printed from the stamp to a target surface. Imine chemistry is applied to immobilize amino-modified DNA and RNA molecules to an aldehyde-terminated substrate. The labile imine bond is reduced to a stable secondary amine bond, forming a robust connection between the polynucleotide strand and the solid support. Microcontact printed oligonucleotides are distributed homogeneously within the patterned area and available for hybridization. By using a robotic spotting system, an array of hundreds of oligonucleotide spots is deposited on the surface of a flat, dendrimer-modified stamp that is subsequently used for repeated replication of the entire microarray by microcontact printing. The printed microarrays are characterized by homogeneous probe density and regular spot morphology.  相似文献   

6.
Fiber optic biosensors operated in a total internal reflection format were prepared based on covalent immobilization of 25mer lacZ single-stranded nucleic acid probe. Genomic DNA from Escherichia coli was extracted and then sheared by sonication to prepare fragments of approximately 300mer length. Other targets included a 25mer fully complementary lacZ sequence, 100mer polymerase chain reaction (PCR) products containing the lacZ sequence at various locations, and non-complementary DNA including genomic samples from salmon sperm. Non-selective adsorption of non-complementary oligonucleotides (ncDNA) was found to occur at a significantly faster rate than hybridization of complementary oligomers (cDNA) in all cases. The presence of ncDNA oligonucleotides did not inhibit selective interactions between immobilized DNA and cDNA in solution. The presence of high concentrations of non-complementary genomic DNA had little effect on extent or speed of hybridization of complementary oligonucleotides. Detection of genomic fragments containing the lacZ sequence was possible in as little as 20 s by observation of the steady-state fluorescence intensity increase or by time-dependent rate of fluorescence intensity changes.  相似文献   

7.
The Zn(2+)-dependent ligation DNAzyme is implemented as a biocatalyst for the amplified detection of a target DNA by the autonomous replication of a nucleic acid reporter unit that is generated by the catalyzed ligation process. The reporter units enhance the formation of active DNAzyme units, thus leading to the isothermal autocatalytic formation of the reporter elements. The system was further developed and applied for the amplified detection of Tay-Sachs genetic disorder mutant, with a detection limit of 1.0 × 10(-11) M. Besides providing a versatile paradigm for the amplified detection of DNA, the system reveals a new, enzyme-free, isothermal, autocatalytic mechanism that introduces means for effective programmed synthesis.  相似文献   

8.
9.
A screening analysis of DNA hybridization and the presence of DNA mutations using an surface plasmon resonance (SPR) biosensor is shown. The influence of lateral and vertical spacers, as well as several hybridization conditions, was studied to optimize the differentiation between fully complementary and mismatched DNA strands. Our results demonstrated that SPR biosensors were able to detect mismatch sequences related to inherited breast cancer, with high specificity and sensitivity. Using PCR synthetic sequences as targets, mutant sequences were clearly discriminated from fully complementary ones, and detection limits below 50 nM were achieved.  相似文献   

10.
This report has described a convenient genotyping method capable of detecting point mutations directly in human genomic DNA based on the combination of ligase chain reaction (LCR) and microbead-enrichment technique. LCR primers, including a biotin-labeled common primer and two fluorescence-labeled allele-specific primers, are designed for two alleles of a mutated site. When genomic DNA carries the mutated site, the common primer and allele-specific primer are ligated to form exponential amplified biotin-labeled fluorescence ligation products. These ligated products are enriched by streptavidin-coated microbeads, and genotypes are identified conveniently according to the fluorescence color of microbeads using fluorescent microscopy. Due to amplification of LCR process and enrichment of microbeads, the detection limit of the proposed method is as low as 10−15 mol/L templates. The method provides a convenient and simple strategy to detect point mutation directly in human genome. We have confirmed the efficiency of this approach with the identification of β-globin gene point mutation, which results in the reduced production of globin in an inherited hemoglobin disorder thalassemia disease.  相似文献   

11.
The tetrahedral cationic chromophore, tetrakis [4-(9,9-bis(6′-(N,N,N-trimethylammonium)hexyl)-2-fluorenyl)phenyl]methane (1) shows better fluorescence resonance energy transfer (FRET) to the fluorescein (Fl) attached to the 5′-terminus of double-stranded DNA (dsDNA-Fl) as compared to the linear oligomers 2 and 3 and also provides efficient DNA hybridization detection.  相似文献   

12.
Base excision repair (BER) is the major mechanism for the correction of damaged nucleobases resulting from the alkylation and oxidation of DNA. The first step in the BER pathway consists of excision of the abnormal base by several specific DNA N-glycosylases. A decrease in BER activity was found to be related to an increased risk of carcinogenesis and aging. To investigate BER activities we set up a new device for DNA repair analysis based on surface plasmon resonance imaging (SPRi). Oligonucleotides bearing an abnormal nucleoside, namely 8-oxo-7,8-dihydro-2'-deoxyguanosine and (5'S)-5',8-cyclopurine-2'-deoxynucleoside, were grafted by a pyrrole electro-copolymerization process on a glass prism coated with a gold layer. The latter label-free DNA sensor chip permits the detection of N-glycosylase/AP-lyase activity as well as the binding of repair proteins to DNA damage without cleavage activity. Thus, the Fapy DNA N-glycosylase (Fpg) protein is shown as expected to bind and then cleave its natural substrate, namely 8-oxo-7,8-dihydro-guanine, together with the resulting abasic site. Using the current SPR imaging-based DNA array we observed an original binding activity of Fpg towards the (5'S)-5',8-cyclodAdenosine residue. These results altogether show that SPR imaging may be used to simultaneously and specifically detect recognition and excision of several damaged DNA nucleobases, and constitutes an interesting technique to screen inhibitors of DNA repair proteins.  相似文献   

13.
An electrochemical genosensor in which signal amplification is achieved using p-aminophenol (p-AP) redox cycling by nicotinamide adenine dinucleotide (NADH) is presented. An immobilized thiolated capture probe is combined with a sandwich-type hybridization assay, using biotin as a tracer in the detection probe, and streptavidin-alkaline phosphatase as reporter enzyme. The phosphatase liberates the electrochemical mediator p-AP from its electrically inactive phosphate derivative. This generated p-AP is electrooxidized at an Au electrode modified self-assembled monolayer to p-quinone imine (p-QI). In the presence of NADH, p-QI is reduced back to p-AP, which can be re-oxidized on the electrode and produce amplified signal. A detection limit of 1 pM DNA target is offered by this simple one-electrode, one-enzyme format redox cycling strategy. The redox cycling design is applied successfully to the monitoring of the 16S rRNA of E. coli pathogenic bacteria, and provides a detection limit of 250 CFU μL−1.  相似文献   

14.
We demonstrate the use of SPR imaging for the detection of site-specific binding of either B or T lymphocyte populations on an electrochemically-grafted antibody array.  相似文献   

15.
The technology of DNA microarrays on porous membrane supports with colorimetric detection on horseradish peroxidase was developed. Comparison of the methods of oligonucleotide immobilization on chemically different membranes was carried out and the conditions of colorimetric detection of biotin in DNA duplexes on microarray surface were optimized. The method that was developed was applied for determining the type of genes encoding extended-spectrum β lactamases.  相似文献   

16.
A method of hybridization analysis on a DNA microarray using colorimetric detection on the basis of horseradish peroxidase has been developed. The effectiveness of the incorporation of biotin as a label in the DNA molecule in the PCR process is estimated and the conditions of hybridization of the biotin-labeled DNA with oligonucleotides immobilized on the surface of the array are optimized. The possibility of using the developed method is shown by the example of genotyping of CTX-M β-lactamases.  相似文献   

17.
18.
The interaction of organic small molecules (OSMs) with a biological molecule is very important. In this contribution, quinone-imine dyes including Acridine Yellow (AY), Neutral Red (NR), Acridine Orange (AO), Brilliant Cresyl Blue (BCB), Thionin (TN), Azur A (AA), Azur B (AB), and Methylene Blue (MB) respectively with double strand DNA (dsDNA) and single strand DNA (ssDNA) were investigated based on the measurements of enhanced resonance light scattering (RLS) and TEM. Mechanism investigations have shown that groove binding occurs between dsDNA and these OSMs, which depends on G-C sequences of dsDNA and the volumes of OSMs. With the amplified RLS signals resulting from the interactions of OSMs with DNA, a new technique has been proposed to detect the hybridization and mismatch of DNA labeling neither the target nor the probe DNA. The results have suggested that the extent of the amplified RLS signals of dsDNA by AY is the maximum among these eight OSMs, and therefore, it has been selected as a typical model system for further discussions.  相似文献   

19.
A structure-switching-based approach for the design of fluorescent biosensors from known RNA aptazymes were demonstrated for the detection of theophylline and thiamine pyrophosphate (TPP). Taking advantages of the ability of graphene oxide (GO) to protect ssDNA from nuclease cleavage and the cyclic amplification induced by deoxyribonuclease I (DNase I), the amplified assay showed high sensitivity. In the presence of target, the target-dependent hammerhead aptazyme cleaves off. The released Shine–Dalgarno (SD) sequence was introduced into the detection system, in which a FAM labeled probe ssDNA was noncovalently assembled on GO, and the fluorescence of the dye was completely quenched. In the presence of the released sequence, the binding between the dye-labeled DNA and the SD sequence alter the conformation of dye-labeled DNA, and disturb the interaction between the dye-labeled DNA and GO, liberating dye-labeled DNA from GO. The fluorescent intensity was increased, whereupon the DNase I can cleave the free DNA in the DNA/RNA complex, thereby liberating the fluorophore and ultimately releasing the SD RNA sequence. The released SD RNA sequence then binds another DNA probe, and the cycle starts anew, which leads to significant amplification of the fluorescent signal. The strategy showed good sensitivity and the dynamic ranges were of 0.1–10 μM and 0.5–100 μM for theophylline and TPP, respectively. The approach opens up a wide range of possibilities for sensing of other small molecules in biological entities.  相似文献   

20.
A ferrocenylnaphthalene diimide-based electrochemical hybridization assay (FND-EHA) was applied to the direct detection of a C-to-G transition in a codon (TCA) for Ser-447 of the human lipoprotein lipase (LPL) gene, which resulted in the termination of the LPL protein there. Either one of two 13-meric oligonucleotide probes, S447 WT and S447X MT, representing sequences complementary to those of the wild type (WT) and mutated (MT) forms, was immobilized on a gold electrode, followed by hybridization with chromosomal DNA extracted from human leukocytes under the condition in which both WT- and MT-type sequences can form a duplex. These two electrodes were soaked in an electrolyte containing FND under a condition [0.1 M HOAc/KOAc (pH 5.6) containing 0.1 KCl and 0.05 mM FND at 40 degrees C], in which only the MT duplex could undergo dissociation. FND was concentrated in proportion to the amount of the duplex formed on the electrode to give rise to a current signal. The electrochemical signal ratios obtained for WT/WT, WT/MT and MT/MT were close to the theoretical 2:1:0 with the S447 WT-modified electrode, and was again close to 0:1:2 with the S447X MT-modified one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号