首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A semi-automated liquid chromatography/tandem mass spectrometry (LC/MS/MS) method was developed for the determination of glimepiride in human plasma. The plasma samples were treated by liquid-liquid extraction (LLE) in 1.2 mL 96-well format micro-tubes. Glimepiride and the internal standard (IS) glibenclamide were extracted from human plasma by LLE, using a mixture of ethyl acetate/diethyl ether 50:50 (v/v) as the organic solvent. After vortexing, centrifugation and freezing, the supernatant organic solvent was evaporated. The analyte and IS were dissolved in a small volume of a reconstitution solution, an aliquot of which was analyzed by reversed-phase LC/MS/MS with positive ion electrospray ionization, using multiple reaction monitoring. The method proved to be sensitive and specific for both drugs, and statistical evaluation revealed excellent linearity for the range of concentrations 2.0-500.0 ng/mL with very good accuracy and inter- and intra-day precisions. The proposed method enabled the rapid and reliable determination of glimepiride in pharmacokinetic or bioequivalence studies after per os administration of a 3 or 4 mg tablet of glimepiride.  相似文献   

2.
A simple, sensitive and rapid liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed and validated for the determination of calceorioside B (CLB) in rat plasma. Detection was performed on a Thermo Scientific Hypersil Gold chromatography column using isocratic elution with a mobile phase of methanol–5 m m ammonium acetate–formic acid (70:30:0.1, v/v/v). Mass spectrometry was performed in selection reaction monitoring mode using a positive electrospray ionization interface. Good linearity was found for CLB in plasma in the linear range of 1.00–500 ng/mL (r > 0.9960). The validated method was successfully applied to the pharmacokinetic study of CLB in rats. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
A selective, sensitive and rapid liquid chromatography-tandem mass spectrometry method has been developed for the determination of caudatin-2,6-dideoxy-3-O-methy-beta-d-cymaropyranoside (CDMC) in rat plasma. This method involves a plasma clean-up step using liquid-liquid extraction, followed by LC separation and positive electrospray ionization mass spectrometry detection (LC/ESI-MS/MS). Chromatographic separation of the analytes was achieved using a C(18) column with a mobile phase of acetonitrile and water (70:30, v/v) at a flow rate of 1.0 mL/min. Low energy collision tandem mass spectrometric analysis (CID-MS/MS) using the multiple reaction monitoring (MRM) mode was used for analyte quantification. For the MRM analysis of CDMC, the following transition at m/z 658.4 --> 529.6 derived from the protonated molecule [M + Na](+). A calibration curve was linear in the 5-500 ng/mL range for CDMC, and the limit of detection was 5 ng/mL. The inter- and intra-day precisions (RSD) were 相似文献   

4.
A rapid, simple, sensitive and specific LC‐MS/MS method has been developed and validated for the simultaneous estimation of atorvastatin (ATO), amlodipine (AML), ramipril (RAM) and benazepril (BEN) using nevirapine as an internal standard (IS). The API‐4000 LC‐MS/MS was operated under the multiple‐reaction monitoring mode using electrospray ionization. Analytes and IS were extracted from plasma by simple liquid–liquid extraction technique using ethyl acetate. The reconstituted samples were chromatographed on C18 column by pumping 0.1% formic acid–acetonitrile (15:85, v/v) at a flow rate of 1 mL/min. A detailed validation of the method was performed as per the FDA guidelines and the standard curves were found to be linear in the range of 0.26–210 ng/mL for ATO; 0.05–20.5 ng/mL for AML; 0.25–208 ng/mL for RAM and 0.74–607 ng/mL for BEN with mean correlation coefficient of ≥0.99 for each analyte. The intra‐day and inter‐day precision and accuracy results were well with in the acceptable limits. A run time of 2.5 min for each sample made it possible to analyze more than 400 human plasma samples per day. The developed assay method was successfully applied to a pharmacokinetic study in human male volunteers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Euphol is a potential pharmacologically active ingredient isolated from Euphorbia kansui. A simple, rapid, and sensitive method to determine euphol in rat plasma was developed based on liquid chromatography‐tandem mass spectrometry (LC‐MS/MS) for the first time. The analyte and internal standard (IS), oleanic acid, were extracted from plasma with methanol and chromatographied on a C18 short column eluted with a mobile phase of methanol–water–formic acid (95:5:0.1, v/v/v). Detection was performed by positive ion atmospheric pressure chemical ionization in selective reaction monitoring mode. This method monitored the transitions m/z 409.0 → 109.2 and m/z 439.4 → 203.2 for euphol and IS, respectively. The assay was linear over the concentration range 27–9000 ng/mL, with a limit of quantitation of 27 ng/mL. The accuracy was between –7.04 and 4.11%, and the precision was <10.83%. This LC‐MS/MS method was successfully applied to investigate the pharmacokinetic study of euphol in rats after intravenous (6 mg/kg) and oral (48 mg/kg) administration. Results showed that the absolute bioavailability of euphol was approximately 46.01%. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
A simple, sensitive, and rapid liquid chromatographic/tandem mass spectrometric (LC/MS/MS) method, using electrospray ionization, was developed and validated to quantify trimetazidine in human plasma using propranolol hydrochloride as an internal standard (IS). Samples were prepared by solid-phase extraction and analyzed without drying and reconstitution. The analyte and IS were chromatographed on a C18 reversed-phase column under isocratic conditions using 2 mM ammonium acetate (pH 3.5)-acetonitrile (40 + 60, v/v) as the mobile phase with a run time of 2.0 min. Quantitation was done on a triple-quadrupole mass analyzer API-3000, equipped with turbo ion spray interface and operating in multiple reaction monitoring mode to detect parent --> product ion (m/z 267.2 --> 181.4) transition. The method was validated for sensitivity, accuracy and precision, linearity, recovery, matrix effect, and stability. Linearity in plasma was observed over the concentration range of 1.5-300 ng/mL. Lower limit of quantification achieved was 1.5 ng/mL with precision < 10% using 10 microL injection volume. The mean relative recovery of analyte (97.36%) and IS (99.93%) was consistent and reproducible. Interbatch and intrabatch precision was < 8.0% and the accuracy determined was within +/- 8% in terms of relative error.  相似文献   

7.
A rapid and sensitive method for simultaneous determination of vincristine and verapamil in rat plasma was first developed and validated, using high‐performance liquid chromatography–tandem mass spectrometry (LC‐MS/MS) in multiple reaction monitoring (MRM) mode via electrospray ionization (ESI). The method, which required a small sample volume (25 µL) of plasma, was linear in the concentration range of 0.5–500 ng/mL for vincristine and 0.1–100.0 ng/mL for verapamil. Finally, the method was successfully employed in a pharmacokinetic study of vincristine and verapamil in rats after an oral administration of a dual‐agent formulation containing vincristine and verapamil. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Osthole, a major component isolated from the fruit of Cnidium monnieri (L.) Cusson, has been widely used in traditional Chinese medicine. We developed and validated a rapid and sensitive LC‐MS/MS method for the quantification of osthole in rat plasma. Sample preparation involved simple liquid–liquid extraction by ethyl acetate after addition of imperatorin as internal standard (IS). The analyte was separated using a C18 column with the mobile phase of methanol–0.1% formic acid (80:20, v/v) at a flow rate of 0.4 mL/min. The elutes were detected under positive electrospray ionization in multiple reaction monitoring mode. The method was sensitive with 0.5 ng/mL as the lower limit of detection. Good linearity was obtained over the range of 1.0–500.0 ng/mL. The intra and inter‐batch accuracy for osthole in rat plasma samples ranged from 99.5 to 108.1% and the variation was <8.9%. The stability, extraction efficiency and matrix effect were also acceptable. This method was successfully applied to the pharmacokinetic study of osthole in rat after intravenous and oral administration. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
A rapid, sensitive and selective LC‐MS/MS method for the quantitative analysis of 3‐hydroxy pterocarpan (S006‐1709) in female rat plasma has been developed and validated. A Discovery RP18 column was used for the chromatographic elution using acetonitrile and 0.1% acetic acid in water as mobile phase (80:20 v/v) at the flow rate of 0.5 mL/min. MS/MS analysis was performed using a triple quadrupole mass spectrometer with electrospray ionization in negative ion mode using biochanin as an internal standard (IS). Extraction of S006‐1709 and IS from rat plasma was done by liquid–liquid extraction method using diethyl ether. The LC‐MS/MS method was sensitive with 1.95 ng/mL as the limit of detection and 3.9 ng/mL as the lower limit of quantification. The method was linear in the concentration range of 3.9–1000 ng/mL. The percentage bias for intraday and interday accuracy was not greater than 4.2 and the %RSD for intraday and interday precision was not greater than 13.2. The recoveries of S006‐1709 and IS were 73.9–79.3 and 85.7%, respectively. S006‐1709 was found to be stable in various stability studies. The validated LC‐MS/MS method was successfully applied for the oral pharmacokinetics study of S006‐1709 at 10 mg/kg in female Sprague–Dawley rats. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
A simple, rapid and high sensitive liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method for the determination of neostigmine in small‐volume beagle dog plasma was developed to assess the plasma pharmacokinetics of neostigmine. After protein precipitation in a Sirocco 96‐well filtration plate, the filtrate was directly injected into the LC‐MS/MS system. The analytes were separated on a Hanbon Hedera CN column (100 × 4.6 mm, 5 µm) with a mobile phase composed of methanol–water (60:40, v/v) and the water containing 0.01% formic acid at a flow rate of 0.6mL/min, with a split ratio of 1:1 flowing 300 μL into the mass spectrometer. The run time was 3 min. Detection was accomplished by electrospray ionization source in multiple reactions monitoring mode with the precursor‐to‐product ion transitions m/z 223.0 → 72.0 and 306.0 → 140.0 for neostigmine and anisodamine (internal standard), respectively. The method was sensitive with a lower limit of quantitation of 0.1 ng/mL, and good linearity in the range 0.1–100ng/mL for neostigmine (r ≥ 0.998). All the validation data, such as accuracy, intra‐run and inter‐run precision, were within the required limits. The method was successfully applied to pharmacokinetic study of neostigmine methylsulfate injection in beagle dogs. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
A rapid, simple and sensitive liquid chromatography–tandem mass spectrometry (LC/MS/MS) was developed for the determination of an antiepileptic drug, lacosamide, in rat plasma. The method involves the addition of acetonitrile and internal standard solution to plasma samples, followed by centrifugation. An aliquot of the supernatant was diluted with water and directly injected into the LC/MS/MS system. The separations were performed on column packed with octadecylsilica (5 µm, 2.0 × 50 mm) with 0.1% formic acid and acetonitrile as mobile phase, and the detection was performed on tandem mass spectrometry by the multiple‐reaction monitoring via an electrospray ionization source. The standard curve was linear over the concentration range from 0.3 to 1000 ng/mL. The lower limit of quantification was 0.3 ng/mL using 50 μL of rat plasma sample. The intra‐ and inter‐assay precision and accuracy were found to be less than 11.7 and 8.8%, respectively. The developed analytical method was successfully applied to the pharmacokinetic study of lacosamide in rats. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
A sensitive, fast and specific method for the quantitation of pinocembrin in human plasma based on high‐performance liquid chromatography–tandem mass spectrometry (LC/MS/MS) was developed and validated. Clonazepam was used as the internal standard (IS). After solid‐phase extraction of 500 μL plasma, pinocembrin and the IS were separated on a Luna C8 column using the mobile phase composed of acetonitrile–0.3 mm ammonium acetate solution (65:35, v/v) at a flow rate of 0.25 mL/min in isocratic mode. The detection was performed on a triple quadrupole tandem mass spectrometer by multiple reaction monitoring via an electrospray ionization source in negative mode by AB SCIEX Qtrap 5500. The assay was linear from 1 to 400 ng/mL, with within‐ and between‐run accuracy (relative error) from ?1.82 to 0.54%, and within‐ and between‐run precision (CV) below 5.25%. The recovery was above 88% for the analyte at 1, 50 and 300 ng/mL. This analytical method was successful for the determination of pinocembrin in human plasma and applied to a pharmacokinetic study of pinocembrin injection in healthy volunteers after intravenous drip administration. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
A rapid, simple and validated method based on liquid chromatography coupled with tandem mass spectrometry (LC‐MS/MS) has been developed for the determination of granisetron in human plasma. Plasma samples were pre‐purified by protein precipitation procedure. The chromatographic separation was achieved with Synergi Polar‐RP (75 × 2 mm, 4 µm) column using a mixture of 5 mm pH4.0 ammonium formate and methanol (300:316, v/v) under isocratic conditions at a flow rate of 0.3 mL/min. The detection was performed on a triple quadrupole tandem mass spectrometer in multiple reaction monitoring mode using positive electrospray ionization. The analysis time was about 2.5 min. The method was fully validated over the concentration range 0.1–10 ng/mL. The lower limit of quantification was 0.1 ng/mL. Inter‐ and intra‐batch precision was <6.1% and the accuracy was within 95.6–100.0%. The mean extraction recovery was 96.3%. Selectivity, matrix effect and stability were also validated. The method was applied to the comparative pharmacokinetic study of granisetron in Chinese healthy subjects. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Aripiprazole is an important antipsychotic drug. A simple, sensitive and rapid ultra‐performance liquid chromatography/electrospray ionization tandem mass spectrometry (UPLC‐ESI‐MS/MS) method was developed and validated for the simultaneous quantification of this compound in rat plasma and brain homogenate. The analyte was extracted from rat plasma and brain homogenate using a weak cation exchange mixed‐mode resin‐based solid phase extraction. The compound was separated on an Agilent Eclipse Plus C18 (2.1 × 50 mm, 1.8 µm) column using a mobile phase of (A) 0.1% formic acid aqueous and (B) acetonitrile with gradient elution. The analyte was detected in positive ion mode using multiple reaction monitoring. The method was validated and the specificity, linearity, limit of quantitation (LOQ), precision, accuracy, recoveries and stability were determined. The LOQ was 0.5 ng/mL for aripiprazole in plasma and 1.5 ng/g in brain tissue. The MS response was linear over the concentration range 0.5–100 ng/mL for aripiprazole in plasma and 1.5–300 ng/g in brain tissue. The precision and accuracy for intra‐day and inter‐day were better than 14%. The relative and absolute recoveries were above 72% and the matrix effects were low. This validated method was successfully used to quantify the rat plasma and brain tissue concentrations of the analyte following chronic treatment with aripiprazole. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
A simple, rapid and sensitive liquid chromatography/electrospray tandem mass spectrometry (LC-MS/MS) quantitative detection method, using cefalexin as internal standard, was developed for the analysis of faropenem in human plasma and urine. After precipitation of the plasma proteins with acetonitrile, the analytes were separated on a C18 reversed-phase column with 0.1% formic acid-methanol (45:55, v/v) and detected by electrospray ionization mass spectrometry in positive multiple reaction monitoring mode. Calibration curves with good linearities (r=0.9991 for plasma sample and r=0.9993 for urine sample) were obtained in the range 5-4000 ng/mL for faropenem. The limit of detection was 5 ng/mL. Recoveries were around 90% for the extraction from human plasma, and good precision and accuracy were achieved. This method is feasible for the evaluation of pharmacokinetic profiles of faropenem in humans, and to our knowledge, it is the first time the pharmacokinetic of faropenem has been elucidated in vivo using LC-MS/MS.  相似文献   

16.
A simple, rapid and sensitive liquid chromatography–tandem mass spectroscopy (LC–MS/MS) method was developed and validated for the determination of ethyl gallate, a pharmacologically active constituent isolated from Lagerstroemia speciosa (Linn.) Pers. This method was used to examine the pharmacokinetics of ethyl gallate and its major metabolite gallic acid in rat plasma using propyl gallate as an internal standard. After precipitation of the plasma proteins with acetonitrile, the analytes were separated on a Zorbax SB‐C18 column (3.5 μm, 2.1 × 50 mm) with an isocratic mobile phase consisted of methanol–acetonitrile–10 mM ammonium acetate (10 : 25 : 65, v/v/v) containing 0.1% formic acid at a flow rate of 0.25 mL/min. The Agilent G6410A triple quadrupole LC/MS system was operated under the multiple‐reaction monitoring mode using the electrospray ionization technique in negative mode. The lower limits of quantification of gallic acid and ethyl gallate of the method were 0.5 and 1.0 ng/mL. The intra‐day and inter‐day accuracy and precision of the assay were less than 8.0%. This method has been applied successfully to a pharmacokinetic study involving the intragastric administration of ethyl gallate to rats. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
This paper describes a sensitive and selective liquid chromatography with tandem mass spectrometry (LC-MS/MS) method for determination of the novel survivin suppressant YM155, 1-(2-methoxyethyl)-2-methyl-4,9-dioxo-3-(pyrazin-2-ylmethyl)-4,9-dihydro-1H-naphtho[2,3-d]imidazolium, which is developed for the treatment of solid tumors. This method uses a liquid-liquid extraction from 0.25 mL of dog plasma. LC separation was carried out on a Genesis Silica column (50 mm x 3.0 mm i.d.) at a flow-rate of 0.5 mL/min. Compounds were eluted using a mobile phase of 5 mm ammonium acetate and 0.1% formic acid in water-0.1% formic acid in acetonitrile, 17:83 (v/v). MS/MS detection was carried out with an MDS-Sciex API3000 triple quadrupole mass spectrometer in positive electrospray ionization mode. The standard curve was linear from 0.05 to 50 ng/mL (r > or = 0.9968). The lower limit of quantitation was 0.05 ng/mL. Good intra- and inter-day assay precision (within 7.4% RSD) and accuracy (within +/-12.3%) were obtained. The extraction recovery was 66.2%. The method was successfully applied to preclinical pharmacokinetic studies in dogs.  相似文献   

18.
A selective, rapid, and sensitive liquid chromatography–tandem mass spectrometry(LC‐MS/MS) method was developed and validated for the determination of letrozole (LTZ) in human plasma, using anastrozole as internal standard (IS). Sample preparation was performed by one‐step protein precipitation with methanol. The analyte and IS were chromatographed on a reversed‐phase YMC‐ODS‐C18 column (2.0 × 100 mm i.d., 3 µm) with a flow rate of 0.3 mL/min. The mobile phase consisted of water containing 0.1% formic acid (v/v) and methanol containing 0.1% formic acid (v/v). The mass spectrometer was operated in selected reaction monitoring mode through electrospray ionization ion mode using the transitions of m/z 286.2 → 217.1 for LTZ and m/z 294.1 → 225.1 for IS, respectively. The method was validated for selectivity, linearity, lower limit of quantitation, precision, accuracy, matrix effects and stability in accordance with the US Food and Drug Administration guidelines. Linear calibration curves were 1.0–60.0 ng/mL. Intra‐ and inter‐batch precision (CV) for LTZ were <9.34%, and the accuracy ranged from 97.43 to 105.17%. This method was successfully used for the analysis of samples from patients treated with LTZ in the dose of 2.5 mg/day. It might be suitable for therapeutic drug monitoring of these patients and contribute to predict the risk of adverse reactions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
A new, rapid, sensitive and specific LC‐MS/MS method has been developed and validated for the simultaneous quantification of tenofovir and lamivudine in human plasma using abacavir as an internal standard. An API‐4000 LC‐MS/MS with electrospray ionization was operated in multiple‐reaction monitoring mode for the analysis. The analytes were extracted from plasma by solid‐phase extraction technique using an Oasis HLB cartridge. The reconstituted samples were chromatographed on a Chromolith ROD speed C18 column using a mixture of 0.1% formic acid in water and acetonitrile (90:10 v/v) at a flow‐rate of 1 mL/min. The method was validated as per the FDA guidelines. The calibration curves were found to be linear in the range of 5–600 ng/mL for tenofovir and 25– 4000 ng/mL for lamivudine. The intra‐ and inter‐day precision and accuracy results were well within the acceptable limits. A run time of 2.8 min consumed for each sample made it possible to analyze more samples per day. The proposed assay method was found to be applicable to a pharmacokinetic study in human male volunteers. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
A rapid, simple, selective and sensitive LC‐MS/MS method was developed for the determination of curculigoside in rat plasma. The analytical procedure involves extraction of curculigoside and syringin (internal standard, IS) from rat plasma with a one‐step extraction method by protein precipitation. The chromatographic resolution was performed on an Agilent XDB‐C18 column (4.6 × 50 mm, 5 µm) using an isocratic mobile phase of methanol with 0.1% formic acid and H2O with 0.1% formic acid (45:55, v/v) at a flow rate of 0.35 mL/min with a total run time of 2.0 min. The assay was achieved under the multiple‐reaction monitoring mode using positive electrospray ionization. Method validation was performed according to US Food and Drug Administration guidelines and the results met the acceptance criteria. The calibration curve was linear over 4.00–4000 ng/mL (R = 0.9984) for curculigoside with a lower limit of quantification of 4.00 ng/mL in rat plasma. The intra‐ and inter‐day precisions and accuracies were 3.5–4.6 and 0.7–9.1%, in rat plasma, respectively. The validated LC‐MS/MS method was successfully applied to a pharmacokinetic study of curculigoside in rats after a single intravenous and oral administration of 3.2 and 32 mg/kg. The absolute bioavailability of curculigoside after oral administration was 1.27%. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号