首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Sn?CZn?CAl system was studied in connection with the possible substitution of lead-based solders for temperatures up to 350?°C. Ternary alloys with up to 3?wt% of aluminium were prepared. The investigated alloys lie close to the monovariant line (eutectic valley) of the Sn?CZn?CAl system. The temperatures of phase transitions of six binary Sn?CZn reference alloys and fourteen ternary Sn?CZn?CAl alloys using DTA method were investigated in this paper. DTA experiments were performed at the heating/cooling rate of?4?°C?min?1 using Setaram SETSYS 18TM experimental equipment. The temperatures of phase transitions in the ternary Sn?CZn?CAl system were obtained, namely, the temperature of ternary eutectic reaction T E1 (197.7?±?0.7?°C), temperature of ternary transition reaction T U1 (278.6?±?0.7?°C), temperatures of liquidus and other transition temperatures for studied alloys. Temperatures obtained during DTA heating runs were used as authoritative. DTA curves obtained during cooling enabled realising better differentiation of the obtained overlapped heat effects (peaks) during heating. Theoretical isopleths of the Sn?CZn?CAl phase diagram were calculated using the Thermocalc software and MP0602 thermodynamic database. Experimental data were compared with the calculated temperatures, and a good agreement was obtained.  相似文献   

2.
Nano-crystals of Li0.35Zn0.3Fe2.35O4 ferrite have been synthesized using citrate precursor method. The sample synthesized was sintered at different temperatures in order to vary their crystallite size. The average crystallite size was found in the range 24?C57?nm by varying the temperature from 300 to 1,100?°C. X-ray diffraction measurements confirmed the formation of cubic spinel structure at all the sintering temperatures in this work. The high frequency performance of the ferrite samples were estimated by measuring the frequency dispersion of the dielectric constant, dielectric loss and ac electrical conductivity. The dielectric constant has been observed to show normal behavior with frequency and decreases with the decrease in crystallite size. It is also observed that decrease in dielectric constant depends on sintering temperature because of lithium evaporation at higher temperature. A low value of dielectric constant and dielectric loss has been found, which makes them applicable for high frequency applications by decreasing the skin effect. The impedance spectroscopy technique has been used to study the effect of grain and grain boundary on the electrical properties of Li0.35Zn0.3Fe2.35O4 ferrite. The analysis of data shows only one semi-circle corresponding to the grain boundary volume suggesting that the conduction mechanism takes place predominantly through grain boundary volume in the prepared samples.  相似文献   

3.
Manganese ferrite nanopowder was prepared by a new solvothermal method, using 1,2 propanediol as solvent and KOH as precipitant. The as-synthesized powder, by solvothermal treatment in autoclave at 195 °C, for 12 h, consisted of fine manganese ferrite nanoparticles. The further thermal treatment of the initial manganese ferrite powder to higher temperature resulted in manganese ferrite decomposition due to Mn(II) oxidation to Mn(III), as observed by X-ray diffraction. FT-IR spectroscopy has evidenced that the oxidation takes place even at 400 °C. The oxidation of Mn(II) to Mn(III) was studied by TG/DSC simultaneous thermal analysis. It was shown that Mn(II) oxidation takes place in a very small extent up to 400 °C. The main oxidation step occurs around 600 °C, when a clear mass gain is registered on TG curve, associated with a sharp exothermic effect on DSC curve. The exothermic effect is smaller in case of the powder annealed at 400 °C, confirming the superficial oxidation of Mn(II) up to 400 °C. In order to avoid Mn(II) oxidation, the powder obtained at 400 °C was further annealed at 800 °C in argon atmosphere, without degassing, when manganese ferrite MnFe2O4 was obtained as major crystalline phase (69 %). All manganese ferrite powders showed a superparamagnetic behavior, with maximum magnetization of 51 emu g?1 in case of the as-synthesized powder, characteristic of magnetic ferrite nanopowders.  相似文献   

4.
A seven-coordinate manganese(II) complex with the tripod tetradentate ligand tris(N-methylbenzimidazol-2-ylmethyl)amine (Mentb), [Mn(Mentb)(salicylate)(DMF)](ClO4) ? (DMF), was synthesized and characterized by elemental, electrical conductivity, infrared, and UV-Vis spectral measurements. The crystal structure of the complex has been determined by single-crystal X-ray diffraction. MnII is bonded to a Mentb, a salicylate and dimethylformamide through four nitrogens and three oxygens, resulting in seven-coordination. Cyclic voltammograms of the complex indicate a quasi-reversible Mn3+/Mn2+ couple. The X-band electron paramagnetic resonance spectrum exhibits a six-line manganese hyperfine pattern with g = 2, A = 93, confirming that the material is high-spin Mn(II).  相似文献   

5.
Glycine metal complexes were prepared by the reaction of glycine with Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) in 1?:?2 molar ratio. Thereafter their condensation polymerization was done with glutaraldehyde to obtain polymer metal complexes. All the synthesized polymer metal complexes were characterized by elemental analysis, FT-IR, 1H-NMR, and UV-Vis spectrometry, magnetic susceptibility, and thermogravimetric studies. The analytical data of all the polymers agreed with 1?:?1 molar ratio of metal complex to glutaraldehyde and magnetic moment data suggest that PGG–Mn(II), PGG–Co(II), PGG–Ni(II), and PGG–Cu(II) have an octahedral geometry around the metal atom, whereas the tetrahedral geometry was proposed for PGG–Zn(II) polymer. The PGG–Mn(II) and PGG–Cu(II) showed octahedral geometry. Thermal behavior of the polymer metal complexes was obtained at a heating rate of 10°C?min?1 under nitrogen atmosphere from 0°C to 800°C. The antimicrobial activities of synthesized polymers were investigated against Streptococcus aureus, Escherichia coli, Bacillus sphaericus, Salmonella sp. (Bacteria), Fusarium oryzae, Candida albicans, and Aspergillus niger (Yeast).  相似文献   

6.
The system manganese(VII)-3,7-bis(dimethylamino)-phenothiazin-5-ium chloride (MB)-water-1,2-dichloroethane has been studied using UV-spectrophotometry. The molar absorptivity of the complex is (3.86 ± 0.06) × 104 L mol?1 cm?1 at 290 nm and the system obeys Beer??s law in the range 0.1?C0.99 ??g mL?1 Mn(VII). The detection limit (DL) and quantitation limit (QL) of Mn(VII) determination were found to be 0.0146 and 0.049 ??g mL?1, respectively. The composition of the complex is established as MB: MnO 4 ? = 1: 1. Extraction investigations of the system discussed were carried out. The characteristic values for the extraction equilibrium and the equilibrium in the aqueous phase was determined: extraction constant Kex = (1.12 ± 0.05) × 105, distribution constant KD = 75.61 ± 0.1 and association constant ?? = (1.48 ± 0.08) × 103. A new method has been developed for the microdetermination of manganese(VII) in plants and steels.  相似文献   

7.
Nanosized lithium iron phosphate (LiFePO4) and transition metal oxide (MO, where M is Cu, Ni, Mn, Co, and Fe) particles are synthesized continuously in supercritical water at 25?C30?MPa and 400??C under various conditions for active material application in lithium secondary ion batteries. The properties of the nanoparticles, including crystallinity, particle size, surface area, and electrochemical performance, are characterized in detail. The discharge capacity of LiFePO4 was enhanced up to 140?mAh/g using a simple carbon coating method. The LiFePO4 particles prepared using supercritical hydrothermal synthesis (SHS) deliver the reversible and stable capacity at a current density of 0.1?C rate during ten cycles. The initial discharge capacity of the MO is in the range of 800?C1,100?mAh/g, values much higher than that of graphite. However, rapid capacity fading is observed after the first few cycles. The continuous SHS can be a promising method to produce nanosized cathode and anode materials.  相似文献   

8.
From UV?Cvis spectrophotometry and cyclic voltammetry it is demonstrated the interaction of dopamine, DA, and ascorbic acid, AA, with ??-cyclodextrin, ??CD, in aqueous media at pH 3.0. The formation constants of the respective inclusion complexes were also determined. The spectrophotometry data fed into the data processing software SQUAD, allowed calculation of the said constants for the AA?C??CD complex (H2AA?C??CD) giving a value of 3236 M?1, while for the dopamine complex DA?C??CD (H3DA+??CD) this was 5888 M?1. From these results, the theoretical absorption spectra were generated which fitted quite well the experimental ones, thus indicating clearly that the constants are reliable. Moreover, from the cyclic voltammetry data, the stated constants were also calculated whereby that of the H2AA?C??CD gave a value of 3981 M?1 while for the dopamine complex DA?C??CD (H3DA+??CD) it was 4898 M?1. It is noteworthy to say that these values were similar to those found through spectrophotometry.  相似文献   

9.
This paper reports the use of an adsorptive voltammetric technique for Pb(II) determination using cupferron as a selective complexing agent. After accumulation of the complex onto a hanging mercury drop electrode, the electrode potential was scanned with differential pulse modulation and the reduction current of lead was observed at about??0.5?V. Under optimum conditions (5?×?10?4?mol?L?1 cupferron concentration, 0.1?mol?L?1 acetate buffer (pH 5.5), adsorption at??50?mV for 30?s) the detection limit was 5.1?×?10?10?mol?L?1. The relative standard deviation of five measurements for low lead concentration was 3.1%. The accuracy of the method was tested by analysing certified reference material (SPS-WW1 Waste Water). Finally, the method was successfully applied to the determination of Pb(II) in river water samples without any pretreatments.  相似文献   

10.
The use of direct current arc atomic emission spectrometry (DC-arc-AES) with a CCD spectrometer for the direct determination of the trace impurities Al, Ca, Cr, Cu, Fe, Mg, Mn, Na, Ni, Si, Ti, and Zr in three well characterized boron carbide powders is described. The detection limits obtained by the procedure were found to be between 0.2 (Mg) and 25 (Na) ??g?g?1 for the above elements. Three boron carbide powder samples with trace element concentrations between 0.9 (Cu) and 934 (Si) ??g?g?1 for Al, Ca, Cr, Cu, Fe, Mg, Mn, Na, Ni, Si, Ti, and Zr ?? including the standard reference material ERM?-ED102 ?? were analyzed by DC-arc-AES. The relative standard deviations for 9 measurements when using 5.0?±?0.3?mg of the respective samples were found to vary from 6.2 to 27% for Al and Cu, respectively. The trace elements Al, Ca, Cr, Cu, Fe, Mn, Ni, Si, Ti and Zr could be determined in the standard reference material and their concentrations determined by DC-arc AES were found to be between 89 and 116% of the accepted values. Fe and Ti were determined by DC-arc AES in the three boron carbide samples as well as in Al2O3, BN, SiC, coal fly ash, graphite and obsidian rock. The correlation coefficients of the plots of the net intensities versus the accepted values over the concentration ranges from 18 to 1750 and from 6 to 8000???g?g?1 are 0.999 and 0.990 for Fe and Ti, respectively.
Figure
Coupling of DC arc to a CCD spectrometer  相似文献   

11.
A new chelating resin, poly(diacetonitrile methacrylamide-co-divinylbenzene-co-vinylimidazole), was synthesized and characterized by infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, and elemental analysis. The novel resin was used for the first time as a chelating adsorbent for the preconcentration of Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn from various samples by flame atomic absorption spectrometry. The adsorption capacities of the resin were 29.3, 31.6, 29.3, 27.3, 35.5, 31.7, 39.8, and 32.3?mg?g?1 for Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn, respectively. The detection limits of the metal ions were from 0.42 to 3.21?µg?L?1. A preconcentration factor of 30 for all metal ions was obtained. The precision of the method as the relative standard deviation was less than or equal to 2.6%. The described method was validated with certified reference materials and fortified real samples. The method was used for the determination of the analytes in well water and wastewater.  相似文献   

12.
The complexes Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) with 3-(anilinomethylene)-2-methoxychroman-4-one were synthesized and characterized by elemental analysis, conductivity, infrared and UV?CVis spectroscopy, 1H NMR, X-ray diffraction patterns, magnetic susceptibility and thermal analysis (TG/DTG/DSC). The X-ray analysis shows that the studied compounds crystallize in the triclinic crystal system and they are no isostructural complexes. The unit cell parameters for these chelates were presented. The molecules of solvent are in the outside coordination sphere of the complexes. The chelates have different thermal stability and they decompose in air atmosphere in three steps. The coordination of metal ions is through nitrogen atom from ligand and oxygen atom present in 4-position of ??-pyrone. The studied chelates have electrolyte (1:1) and non-electrolyte nature. They are high-spin complexes with octahedral coordination and the weak ligand fields.  相似文献   

13.
Two new Mn(II) complexes [Mn(Hmbhce)2(o-phen)] (1) and [Mn(Hmbhce)2(bpy)] (2) based on N??-(2-methoxybenzoyl)hydrazine carbodithioic acid ethyl ester (H2mbhce) have been synthesized by reacting Mn(OAc)2·4H2O with H2mbhce in the presence of o-phen/bpy. The complexes have been characterized by elemental analyses, magnetic susceptibility measurement, IR, UV?CVis and single crystal X-ray data. Both complexes [Mn(Hmbhce)2(o-phen)] and [Mn(Hmbhce)2(bpy)] crystallize in monoclinic system with space group P 21/c and P 21/n, respectively. The single crystal X-ray structures of 1 and 2 show that the Mn(II) center is bonded with two (Hmbhce)? through carbonyl oxygen and deprotonated hydrazinic nitrogen, plus two nitrogen atoms from one o-phen/bpy co-ligand. The crystal structures of complexes 1 and 2 are stabilized by weak intramolecular N?CH···O hydrogen bonding and C?CH···?? interactions giving supramolecular architectures.  相似文献   

14.
Graphene aerogel-supported manganese ferrite (MnxFe3−xO4/GAs) and reduced-graphene oxide/manganese ferrite composite (MnFe2O4/rGO) were synthesized and studied as cathode catalysts for oxygen reduction reactions in urea/O2 fuel cells. MnFe2O4/GAs exhibited a 3D framework with a continuous macroporous structure. Among the investigated Fe/Mn ratios, the more positive oxygen reduction onset potential was observed with Fe/Mn=2/1. The half-wave potential of MnFe2O4/GAs was considerably more positive than that of MnFe2O4/rGO and comparable with that of Pt/C, while the stability of MnFe2O4/GAs significantly higher than that of Pt/C. The best urea/O2 fuel cell performance was also observed with the MnFe2O4/GAs. The MnFe2O4/GAs exhibited an OCV of 0.713 V and a maximum power density of 1.7 mW cm−2 at 60 °C. Thus, this work shows that 3D structured graphene aerogel-supported MnFe2O4 catalysts can be used as an efficient cathode material for alkaline fuel cells.  相似文献   

15.
Pectins (Pec) of 33 to 74?% esterification degree were tested with doxorubicin (Dox), a very high toxic drug widely used in cancer therapies. Pec with 35 and 55?% DE were selected because of the Dox binding higher than Pec microspheres of 35 and 55?% obtained by ionotropic gelation with Ca+2 have 88 and 66?% Dox loading capacity. Kinetic Dox release showed more than 80.0 and about 30.0?% free drug from 35?% and 55?% Pec formulations at pH 7.4, and 37?°C after 1-h incubation, respectively. Besides, Dox release decrease to 12?% in 55?% Pec microsphere formulation after 1-year storage at 4?°C. FTIR analysis of Pec?CDox complex showed hipsochromic shifts for the ??C=O, ??N-H and ??C-C vibrational modes compared to Dox spectrum suggesting strong interaction between the drug cargo and the matrix. Rheological studies of Pec and Pec?CDox samples flow behavior exhibited a shear-thinning nature. Fifty-five percent of Pec showed higher viscosity than the viscosity for 35?% Pec in all range of temperatures analyzed, and decreased when the temperature is raised. Besides, Pec?CDox complexes have higher viscosity values than those of the corresponding Pec samples, and viscosity curves as function of shear rate for 35?% Pec?CDox are above the curves of 55?% Pec?CDox. In both cases, the results are confirming significant interaction between the cargo and the matrix, which also was established in viscoelastic dynamic analysis.  相似文献   

16.
A novel chemically modified electrode based on an osmium complex-containing redox polymer film coated on single-walled carbon nanotube (SWNT) modified glassy carbon electrode (GCE) has been described for the determination of nitric oxide. The results showed that the oxidation current increased significantly at the SWNT/redox polymer coated GCE, as compared to that observed on a bare GCE- and SWNT-modified GCE. Amperometric measurement was carried out at the potential of +0.80?V (vs. Ag|AgCl) and the current response to NO was found to be directly proportional to its concentration in the range from 2.0?×??0?? to 4.0?×??0?? M, and the detection limit was estimated to be 5.0?×??0?? M.  相似文献   

17.
The synthesis and characterization of the lariat-silacrown ether (Sila15NH??IUPAC name: 3-[1-[[1-(3-aminopropyl)-2,5,8,11,14-pentaoxa-1-silacyclotetradec-1-yl] oxy]-2,5,8,11,14-pentaoxa-1-silacyclotetradec-1-yl]propan-1-amine) and its complex with copper(II) ion, Cu(II)?CSila15NH, are reported in this work. Tetraethylene glycol, 3-aminopropyl triethoxysilane and metallic sodium were employed as precursors and the lariat-silacrown ether obtained in a good yield (64?%) was characterized by elemental analysis, infrared spectroscopy (FTIR) and nuclear magnetic resonance of 1H, 13C and 29Si. The Cu(II)?CSila15NH was characterized by elemental analysis and FTIR. The straightforward Cu(II) complex formation suggests this property could be explored for analytical purposes.  相似文献   

18.
The polymeric ligand (BFP) was synthesized by condensation of bisphenol-A, formaldehyde, and piperazine in alkaline medium at 70–80°C. The polymer–metal complexes were synthesized by the reaction of BFP with Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) acetates in 1?:?0.5 (ligand?:?metal) molar ratio. All the synthesized polymers were characterized by elemental, spectral (infrared, 1H-NMR, and UV-Vis), magnetic moment measurements, and thermal (TGA) analysis. The ligand-field and nephelauxetic parameters have been determined from UV-Vis spectra using ligand-field theory. Elemental analyses indicate the association of water with metal for Mn(II), Co(II), and Ni(II), which is also supported by TGA. The antimicrobial activities of the synthesized polymers were studied by agar well diffusion methods against Bacillus subtilis, Bacillus megaterium, Staphylococcus aureus, Escherichia coli, Salmonella typhi, Pseudomonas aeruginosa, and Shigella boydii. The antimicrobial activity and thermal stability of Cu(II)–polymer were higher than the other polymer–metal complexes due to the higher stability constant of Cu(II).  相似文献   

19.
Complexation in solution between danazol and two different cyclodextrins [2-hydroxypropyl-??-cyclodextrin (HP-??-CD) and 2-hydroxypropyl-??-cyclodextrin (HP-??-CD)] was studied using phase solubility analysis, and one- and two-dimensional 1H-NMR. The increase of danazol solubility in the aqueous cyclodextrin solutions showed a linear relationship (AL profile). The apparent stability constant, K 1:1, of each complex was calculated and found to be 51.7 × 103 and 7.3 × 103 M?1 for danazol?CHP-??-CD and danazol?CHP-??-CD, respectively. 1H-NMR spectroscopic analysis of varying ratios of danazol and the different cyclodextrins in a mixture of EtOD?CD2O confirmed the 1:1 stoichiometry. Cross-peaks, from 2D ROESY 1H-NMR spectra, between protons of danazol and H3?? and H5??of cyclodextrins, which stay inside the cyclodextrin cavity, proved the formation of an inclusion complex between danazol and the cyclodextrins. For HP-??-CD, the inclusion complex is formed by entrance of the isooxazole and the A rings of danazol in the cyclodextrin cavity. For HP-??-CD, two different inclusion structures may exist simultaneously in solution: one with the isooxazole and A ring in the cavity and the other with the C and D ring inside the cavity. DLS showed that self-aggregation of the CD??s was absent in the danazol HP-??-CD system up to a CD concentration of 10% and in the danazol HP-??-CD system up to a CD concentration of 5%.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号